
School of Engineering Science • Burnaby • BC • V5A 1S6

Enclosure: Design Specifications for a System to Track Athlete Performance

March 11th, 2010

Dr. Andrew Rawicz
School of Engineering Science
Simon Fraser University
Burnaby, BC
V5A 1S6

Re: ENSC 440 Design Specifications for a System to Track Athlete Performance

Dear Dr. Rawicz:

The attached document outlines the design specifications for a diagnostic tool that tracks
athlete performance. This proposed product is called the PosiTracker and it can be used
by large sports teams as both a broadcasting tool and a training tool. Millions of dollars
are spent every year on both player salaries and broadcasting rights, our product can
protect this investment through enhanced training and an improved viewer experience.

This document outlines the proof-of-concept design specifications for the PosiTracker
System and each sub-component. The goal of the document is to provide a design that
implments the all of functionality descibed in our functional specifications for a proof-of-
concept device. An overview of the whole system is first given before it is broken down
into sub-components and discussed in detail. The design specifications for a final product
are not included but will be discussed in each section.

PosiTrack Systems consists of four hard-working and motivated team members: Andreea
Hrehorciuc, Jaime Valdes, Jeff Anderson, and Ryan Lynne. Should you have any
questions or comments about the design specifications please feel free to contact me by
phone or email.

Regards,

Ryan Lynne

1.778.840.9111

posi.track.systems@gmail.com

PosiTrack Systems

Design Specifications for a

System to Track Athlete Performance

A highly precise diagnostic tool to analyze all aspects of an athlete’s performance

Project Team: Andreea Hrehorciuc

Jamie Valdes

Jeff Anderson

Ryan Lynne

Contact Person: Ryan Lynne

posi.track.systems@gmail.com

Submitted to: Dr. Andrew Rawicz

School of Engineering Science

Simon Fraser University

Issued date: March 11th, 2010

Revision: 16

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems ii

Executive Summary:

The attached document outlines the proof-of-concept design specifications for a system
to track athlete performance using location, acceleration, heart rate, and speed. This
proposed product is called the PosiTracker and it can be used by large sports teams as
both a broadcasting tool and a training tool. Millions of dollars are spent every year on
both player salaries and broadcasting rights, this product can protect this investment
through enhanced training and an improved viewer experience.

The goal of the document is to provide the PosiTrack team with a design that implements
the functional specifications described in [1] for a proof-of-concept device. An overview
of the whole system is first given before it is broken down into sub-components and
discussed in detail. Finally, a test plan is provided to ensure that all of the functionality
requirements have been met.

Listed below are the key design decisions for the proof-of-concept device. Justification of
each decision can be located in the relevant sections of this document.

1. The localization technique will use a combination of Received Signal Strength from
wireless Access Points and inertial measurements from accelerometers/gyroscopes.

2. The Gumstix Overo Fire Computer on Module will be used in the Diagnostic Tool
located on each athlete. It will measure the wireless signal strength and inertial
measurements from the accelerometers/gyroscopes.

3. The Gumstix Tobi expansion board will connect to the Overo Fire to allow for
debugging/development of software and to allow for the Inertial Measurement Unit
containing the accelerometers/gyroscopes to be attached.

4. The TCP/IP protocol in combination with the use of Dynamically Linked Libraries
will create the connection between the Diagnostic Tool located on the athlete and
the Graphical User Interface.

5. The visual basic language will be used to create the Graphical User Interface.

6. Standard wireless Access Points will be used to generate the measurable wireless
signals and to also create a wireless link between the Graphical User Interface and
the athlete.

PosiTrack Systems is committed to the production of the PosiTracker prototype, using
the design specifications outlined in this document. The completion of the proof-of-
concept device is expected during the week of April 16th 2010.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems iii

Table of Contents:

List of Figures: 1

List of Tables: 1

List of Objects: 1

List of Functions: 2

Glossary and Acronyms: 5

1. Introduction 7
1.1. Scope.. 7
1.2. Intended Audience ... 7

2. Full System Design 8
2.1. System Functionality ... 8
2.2. Design Overview ... 8
2.3. Localization Methods... 9
2.4. Device Layout.. 12
2.5. Software ... 13

2.5.1. Program Flow.. 13
2.5.2. Messages ... 19
2.5.3. Packaging.. 20
2.5.4. Athlete Class ... 21
2.5.5. Sample Class... 25

3. Sub-Component Design 30
3.1. Diagnostic Tool.. 30

3.1.1. Gumstix Overo Fire COM .. 30
3.1.2. Gumstix Tobi Expansion Board ... 33
3.1.3. Sparkfun 6-DOF IMU... 35
3.1.4. Li-Ion Battery and Charger ... 36
3.1.5. Diagnostic Tool Schematic ... 37
3.1.6. Diagnostic Tool-Casing and Strap .. 38
3.1.7. Diagnostic Tool Software ... 40

3.1.7.1 PosiTrack Athlete Executable ... 41
3.1.7.2 Measurement Tools ... 44
3.1.7.3 Message Passing.. 45

3.2. Access Points ... 47
3.3. Graphical User Interface .. 47

3.3.1. Overview of the Graphical User Interface .. 47
3.3.2. Graphical User Interface-Layout .. 48
3.3.3. Graphical User Interface-Software Layout Interface...................................... 49
3.3.4. Graphical User Interface-Software ... 50

3.3.4.1 PosiTrack GUI DLL.. 50
3.3.4.2 Algorithms... 53

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems iv

3.3.4.3 Message Passing.. 55

4. System Test Plan 56
4.1. Overview.. 56
4.2. Access Points Tests.. 56
4.3. Gumstix Tests .. 57
4.4. Diagnostic Tool Tests .. 57
4.5. Graphical User Interface Tests... 58
4.6. Algorithm Tests ... 60

5. Conclusion 62

6. References 63

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 1 -

List of Figures:

Figure 1: High level functional view of the PosiTrack system... 8
Figure 2: Design overview of the PosiTrack system[2].. 9
Figure 3: Example layout of PosiTracker in playing area. The large antennas in this figure
represent wireless APs. ... 12
Figure 4: Software Blocks and communication of the PosiTracker 13
Figure 5: The Gumstix Overo Fire Computer on Module (COM). [11]........................... 30
Figure 6: Gumstix Tobi Expansion Board. [15] ... 33
Figure 7: Sparkfun 6-DOF IMU. [18]... 35
Figure 8: Li-Ion Battery and Maxim1555 Charge Board. [22] [23] 36
Figure 9: Diagnostic Tool Schematic. .. 37
Figure 10: Solid works drawing of the entire Diagnostic Tool Module. 39
Figure 11: Hockey armor with Diagnostic Tool attached to the back. 39
Figure 12: Diagnostic Tool Software Start Up Algorithm.. 40
Figure 13: GUI program flow. .. 48
Figure 14: The Draft look of the GUI windows A, B, and C. .. 49

List of Tables:

Table 1: The accuracy of various localization methods.. 11
Table 2 outlines the software start up, athlete creation and connection
procedures... 15
Table 3 outlines operation to receive the AP ID and input AP location and
transmitted signal strength.. 16
Table 4 outlines the systems sampling procedure.. 17
Table 5 outlines the system’s shut down procedures .. 18
Table 6 defines the message commands .. 19
Table 7 defines the messages sent .. 19
Table 8: 40-pin Expansion Header Pin Descriptions. [17] ... 34
Table 9: Sparkfun 6-DOF IMU Specifications. [19] [20] [21]... 35
Table 10: Summary of the relevant physical information of the DTs sub-components ... 38

List of Objects:

Packaging 20

Class CAthlete 21
Port Number .. 22
IP Address ... 22
Connection Handle.. 22

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 2 -

Player ID ... 23
Player Name .. 23
Player Weight.. 23
Player Height... 23
Number of Samples... 23
Start Pointer Sample.. 24
Current Pointer Sample ... 24
End Pointer Sample... 24

Class CSample 25
Next Sample .. 25
Previous Sample.. 26
Duration... 26
Start Time.. 26
End Time... 26
Date Stamp .. 26
Signal... 27
Number of Signals... 27
Acceleration .. 27
Velocity ... 28
Location... 28
Time Dimension.. 28
Dimension ... 29

PosiTrack Athlete 41

Signal Strength 44

Acceleration 45

Server Athlete 45

PosiTrack GUI 50

Algorithms 54
AP Data ... 54

Client GUI 55

List of Functions:

Packaging 20
Package ... 21
Unpackage... 21

Class CAthlete 21
New Sample .. 24
Delete All Samples.. 24

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 3 -

Class CSample 25

PosiTrack Athlete 41
Main Program.. 41
Start Up PosiTrack Athlete ... 41
Connect PosiTrack Athlete to GUI ... 41
Receive PosiTrack GUI Commands ... 41
Create PosiTrack Athlete .. 42
Delete PosiTrack Athlete .. 42
Send PosiTrack AP Information ... 42
Send PosiTrack Samples ... 42
Take PosiTrack Sample... 43
Parse AP Signal Strength .. 43
Parse Acceleration... 43
Write PosiTrack Athletes to File... 44
Display PosiTrack Samples... 44
Display PosiTrack Athletes... 44

Signal Strength 44
Get AP Signal Strength ... 45

Acceleration 45
Get Acceleration.. 45

Server Athlete 45
Connect to GUI Client .. 45
Receive Message (Athlete) ... 46
Send Message (Athlete) .. 46
Disconnect from GUI Client ... 46

PosiTrack GUI 50
Create PosiTrack Athlete .. 50
Get AP Identification .. 50
Input AP Information .. 51
Sample... 51
Get Signal Strength ... 51
Get Acceleration.. 51
Generate Location ... 52
Calculate Location .. 52
Generate Speed.. 52
Shutdown Diagnostic Tool.. 52
Delete Athlete.. 52
Delete Samples.. 52
Write PosiTrack Athletes to File... 53
Append PosiTrack Athletes Samples to File... 53
Display PosiTrack Samples... 53
Display PosiTrack Athletes... 53

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 4 -

Algorithms 54
Calculate Location .. 54
Calculate Velocity... 55

Client GUI 55
Connect to Athlete Server ... 55
Receive Message (GUI) .. 55
Send Message (GUI) ... 55
Disconnect from Athlete Server.. 55

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 5 -

Glossary and Acronyms:

A/D Analog to Digital

Actions Athlete’s movements and biological information such as heart rate

Anchors A signal source with a known location

AOA Angle of Arrival

AP Access Point (see Anchors)

COM Computer on Module

CPU Central Processing Unit

Dead Reckoning Using current direction and speed to determine future location

DLL Dynamic Linked Library

DOF Degrees of Freedom

DT Diagnostic Tool

EM Electro-Magnetic

GPS Global Positioning System

GUI Graphical User Interface

HDMI High Definition Multimedia Interface

I2C Inter-Integrated Circuit

ID Identification

IEEE Institute of Electrical and Electronics Engineers

IMU Inertial Measurement Unit

IP Internet Protocol

OS Operating System

RAM Random Access Memory

RSS Received Signal Strength

RSSI Received Signal Strength Index

SD Secure Digital

Sensor Fusion To combine multiple measurements to increase measurement
accuracy

SSH Secure Shell

SPI Serial Peripheral Interface

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 6 -

TCP Transmission Control Protocol

TOA Time of Arrival

UART Universal Asynchronous Receive Transmitter

USB Universal Serial Bus

VB Visual Basic

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 7 -

1. Introduction

The PosiTracker is a system that tracks the relevant statistics of athletes during game play
or training. The system is targeted towards large sports teams and can be used for
physical training, coaching or broadcasting. This system contains three main sub-
components: the Diagnostic Tool, the Access Points, and the Graphical User Interface.
The Diagnostic Tool will be worn by the athletes in order to gather information such as
location, acceleration, heart rate, and speed. This will be sent wirelessly back to a
computer station running the Graphical User Interface. The Diagnostic Tool is able to
determine it’s location by measuring the signal strength of the various Access Points.
Throughout this document the Diagnostic Tool, Access Points, and Graphical User
Interface will be referred to as the DT, APs, and GUI.

1.1. Scope
This document provides a design implementation for the functional requirements
provided in “Functional Specifications for a System to Track Athlete Performance” [1].
This document specifies requirements for both a proof-of-concept device and a final end
product. This design will only implement the requirements for the proof of concept
device; however, the end product requirements will be considered in order to allow for a
smooth transition from the proof-of-concept design to the final product design.
Functional requirements marked as [1-X], and [2-X] outlined in [1] will be implemented
into this design.

1.2. Intended Audience
This design specification document is intended to be used by the members of the
PosiTrack team in order to create a working proof-of-concept device. Its purpose is to
provide a unified vision for the team as well as to provide design guidelines for the
system as a whole and for each sub-component. It is also hoped that by using this
document the PosiTrack team will reduce the overall integration time of the systems sub-
components.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 8 -

2. Full System Design

This section contains a complete overview of the system as a whole and will cover the
following: desired functionality, design overview, localization methods, device layout,
and software design. The subsequent sections will dive more in-depth looking at each
component and its design. All of the sections will discuss the proof-of-concept design and
the justifications for the design choice. The sections will also briefly touch on the
production version and will be clear as to what will not be included in the prototype
version. The final section will outline test plans to ensure a properly functioning device.

2.1. System Functionality

The proposed system has the desired functionality as outlined in the document Functional

Specifications for a System to Track Athlete Performance created by PosiTrack Systems
[1]. This functionality is summarized in the black box diagram of Figure 1. The user will
input their physical goals and then try to match or surpass their goals. The system will
analyze the athlete’s actions and prompt to the user’s level of achievement, being that his
goal has been met or not. With the time constraints of this projects our proof-of-concept
model will only analyzes the athlete in what is called “Game Analysis”. The objective
training software will not be produced for this version of production.

Figure 1: High level functional view of the PosiTrack system.

This system must be able to track the athlete’s position, speed, and acceleration. For
future production models the system will include the ability to measure biological
information such as heart rate. The following sections outline the designed system
intended to give these functionalities.

2.2. Design Overview
Our system to track an athlete’s performance consists of a Diagnostic Tool (DT), Access
Points (APs) and a Graphical User Interface (GUI). The DT is a small electronic device
that will be placed on the athlete and will perform the desired measurements. APs are
wireless routers that conform to the IEEE 802.11 Wi-Fi protocol. The DT measures the

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 9 -

Wi-Fi signal strength from APs placed around the playing area to determine position at a
given time. The DT also measures the linear and rotational acceleration of the athlete.
The raw data generated by the DT will be sent via a WLAN to a host computer. This host
computer will be running the GUI software and receive the data in real time. The GUI
takes the acquired data and generates useful information such as location, speed and
acceleration. Figure 2 below outlines the devices discussed. For this proof-of-concept
prototype the system will track only a single DT however the design allows for the ability
to extend the system to track more than one.

Figure 2: Design overview of the PosiTrack system[2].

The large antennas in this figure represent wireless APs.

The sub-component design section will explain in detail the design of each component
including the DT, the APs and the GUI. Section 2.4 discusses the proposed design layout
of the APs for optimum localization. Section 2.5 touches on the software of the system as
a whole. The communication between devices will be discussed and as well as the
program flow. The following section discusses the chosen localization technique,
alternatives and justification for the choice.

2.3. Localization Methods
Tracking an object’s position can be achieved in a multiple of ways. Fundamentally, the
objects position has to be measured relative to something else and this measurement can
be made via an array of distance measurement tools. In a sports situation the
measurement system cannot obtrude the player’s path or play and the number of
measurements must be great enough to give the velocity and acceleration of the athlete
with reasonable accuracy. Another system constraint is the ability to measure biological
information such as heart rate. This section will discuss time of arrival, angle of arrival,
video processing, power triangulation, and dead reckoning as possible localization

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 10 -

methods. The final localization choice will be presented and an estimate of localization
accuracy will be made.

Time of Arrival (TOA) is a promising localization method for our application. This
method involves measuring the wave propagation time from the location of interest to a
beacon or an AP. Through three or more of these measurements the location can be
resolved using triangulation. Typically sound or electromagnetic waves are used because
of their predictable velocity in the medium that they travel. Both of these methods have
been researched and limitations were found for both methods.

Using acoustic measurements for TOA is quite appealing because of its high accuracy
(<10cm) [3]. The potential problems that arise from this method are range limits,
expensive transducers, and directionality constraints. Long range ultrasonic transducers
were sourced to be $400 and up with ranges of 11m to 15m [8]. The long range
transducers were also found to be highly directional which means large arrays would
have to be used. These qualities are not suited for the application of tracking athlete’s in
an approximate area of 60m by 30m.

Currently athlete tracking systems use GPS for localization so it is natural to discuss the
possibility of using EM wave TOA like GPS employs. The limitations of this system are
today’s computer speeds. Because EM waves travel at such a high speed the either the
distance the wave travels has to be large or the clock to measure the time of propagation
has to have high resolution. The current top of the line CPUs can process just fast enough
to measure the time difference across a 100m distance however the cost does not fit our
projects budget. For this reason this method of localization was not chosen.

Angle of Arrival (AOA) was considered to locate the player. This technique uses the
directionality control of an array antenna system to find the angle the location of interest
is relative to the AP. Using two or more of these type of APs the location can be found. It
has been shown that the 50% of location measurements are within 0.5m of real position
[4]. This accuracy is good for the desired application and the system meets range
requirements however the increased complexity of the APs deliver an unwanted burden
to an already tight schedule.

To create a system that uses video processing to generate acceleration, speed, and
location is possible with excellent accuracy. Although this type of system can do this well
it cannot generate biological data such as heart rate. For this reason the technique was not
chosen.

The chosen method for localization is EM radiation signal strength measurements with
sensor fusion. EM radiation from a source reduces in power predictably as a function of
distance [9]. This predictability can be used to generate a relative distance measurement
from the source (Access Point) to the location of power measurement. Using three or
more APs the position of the measurement location can be obtained. It has been stated [9]

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 11 -

that using a Received Signal Strength (RSS) for an uncalibrated system in an indoor and
outdoor environment gives a location accuracy of 10m and 5m respectively. This
information is presented in Table 1. With a calibrated system the accuracy can reach
within 3m. This accuracy is not as desirable as other localization methods however with
different techniques the accuracy can be improved. Other reasons will also be discussed
as to why RSS is best suited for this system.

Table 1: The accuracy of various localization methods

 Localization Method:
 Outdoor
Accuracy

Indoor
Accuracy

RSS - uncalibrated [9] 5m 10m

RSS - calibrated [9] 3m 3m

RSS - Wi-Fi with propagation model
[6]

-
61% - 1.5m
94.1% - 3m

RSS - Wi-Fi with Sensor Fusion
excluding Dead Reckoning [7]

-
50% - 0.5m
90% - 2m

RSS - Wi-Fi with Sensor Fusion
including Dead Reckoning [5]

- 0.4m

The main design consideration when building an RSS localization system is the type of
antenna along with the frequency of radiation. Three types of antenna were considered:
custom, Wi-Fi 802.11, and Bluetooth. The custom antenna was not the best choice
because of the time and budget constraints of this project. Bluetooth is a popular wireless
connection method however the range is a concern for this application. Wi-Fi, the IEEE
802.11 protocol, was chosen because of its popularity, its ability to cover the appropriate
range with an appropriate number of APs and its secondary application as a
communication method. This protocol is implemented by a large number of chips on the
market and WLAN routers are cheaply available. This makes this protocol ideal to
generate a proof-of-concept model with the time and budget constraints. As an added
benefit, this protocol can also be used to send the measured data from the athlete to the
GUI. There has been a large of amount of work using Wi-Fi for localization, and some of
that work is presented in Table 1. The work in [6] [7] [5] shows that Wi-Fi localization
accuracy can be improved using an appropriate propagation model [6] and a probability
filter, using senor fusion [7], and using dead reckoning [5]. Although [5] uses an

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 12 -

odometer for dead reckoning it has been shown that accelerometers have been used to
dead reckon a person’s position quite well [10].

To summarize, the localization design choice is RSS using Wi-Fi with a combination of
sensor fusion and inertial measurements to dead reckon the position of the athlete. This
document will outline hardware, software and other designs that are integral to this
project. The plan for testing this product will be outlined at the end of the document. The
next section explains the layout of the system, discussing the position of the APs for the
best localization accuracy.

2.4. Device Layout

In order to track the DT in the method described in the previous section, the system needs
three APs for two-dimensional localization and four APs for three-dimensional
localization. This project will be only concerned with 2D and not 3D tracking because of
budget and time constraints. The number of access points can be expanded in future
iterations if desired.

The access points should be placed in locations that give direct line of sight to the athlete
in order to create propagation model simplicity. The APs should also be placed in a
manner as to cover the playing field with their signal and the APs should also span a 2D
space. These statements are required to allow the system to locate the player in all space
of the playing field and fundamentally allow the localization to occur in 2D. Ideally the
APs should be placed in the field so that they are all as far apart from each other as
possible while still providing coverage to the whole field. An example of AP placement
is shown in Figure 3. This figure shows the AP on the edge of the playing field giving
direct line of sight while still allowing of full coverage of the playing field.

Figure 3: Example layout of PosiTracker in playing area.

The large antennas in this figure represent wireless APs.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 13 -

2.5. Software

The system consists of software designed to operate on the Diagnostic Tool and the Host
Computer (the GUI).

The GUI is created in two parts. The first
part being the user interface created with
Visual Basic, VB. The second module is a
Dynamic Linked Library written in C++
and C. The DT consists of an executable
written in C++ and C. Messages will be
sent both directions from the GUI DLL to
the DT program. The message passing will
be achieved by using the internet protocol
suite specifically, Transmission Control
Protocol, TCP. Figure 4 shows the software
blocks.

The user interface is written in VB because
of its ability to create complex interfaces
rapidly. The user interface is connected to a
DLL library written in C/C++ because of
that language’s flexibility. This is the same
reason for creating the DT executable in
that language. The messages are passed
using TCP because our hardware’s ability
to perform this operation and the current
popularity of TCP/IP. Other languages and
message passage methods were reviewed
however the choice suited the members of
the PosiTrack in terms of abilities.

Figure 4: Software Blocks and communication of

the PosiTracker

This section explains the high level communication of the software components and the
sequence of operation that occurs inside and outside the program. The messages that are
passed are discussed. Data structures that are common to all software are presented.

2.5.1. Program Flow

The program flow is presented in tables 2-5 below. Table 2 summarizes the GUI
connecting to the DT while creating the object CAthlete. Table 3 outlines operation to
allow the GUI to receive the AP identification that the DT senses and let the users input

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 14 -

AP locations and transmitted signal strengths. This information is crucial for localization.
Sampling procedures are outline in table 4 and Shut down procedures are stated in table
5. All of the tables relate the user-GUI interactions with the functions that are called
within the software modules. All functions are described in the sections below. Refer to
the list of functions and objects for quick referencing. The next section presents a detail
discussion on the message passed between the GUI DLL and the DT program.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 15 -

Table 2 outlines the software start up, athlete creation and connection procedures

Graphical User
Interface VB

Graphical User
Interface VB

Graphical User
Interface DLL Wi-Fi Diagnostic tool

 Forms Filled and
Buttons Pressed DLL Call Internal Function Message Function

Click and open PosiTrack
application 1

Create PosiTrack
Athlete 1 Connect to Athlete Server

1 Turn on Diagnostic Tool

Choose number of
athletes to be monitored

Or chose to load a file
with athletes already in it.
 1 Main Program
Input player’s name,
height, and weight
 1.1 Start Up PosiTrack Athlete
Input the player’s
diagnostic tools “code”
(port and IP address) 1.2

Connect PosiTrack
Athlete to GUI

Press save to confirm this
athlete or press cancel to
ingore this athlete.
The save button calls the
DLL call 1. 2 Package 1.3

Receive PosiTrack GUI
Commands

Repete for the number of
athletes chosen 3 Send Message (GUI)

2 1.3.1

Receive Message
(Athlete)

If connection fails then
ask if they wish to try
again. Prompt and ask if
the DT is on or if the code
entered is correct.

4
5

Receive Message (GUI)
Unpackage

3

1.3.2
1.3.3
1.3.3
1.3.3

Unpackage

Create PosiTrack Athlete

Package

Send Message (Athlete)

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 16 -

Table 3 outlines operation to receive the AP ID and input AP location and transmitted signal strength

Graphical User
Interface VB

Graphical User
Interface VB

Graphical User
Interface DLL Wi-Fi Diagnostic tool

 Forms Filled and
Buttons Pressed DLL Call Internal Function Message Function

2
Get AP
Identification 1 Package

 2 Send Message (GUI)

 4 1.3.4
Receive Message
(Athlete)

 1.3.5 Unpackage

 1.3.6
Send PosiTrack AP
Information

 1.3.6.1 Get AP Signal Strength

 1.3.6.2 Parse AP Signal Strength

 1.3.6.3 Package

 5 1.3.6.4 Send Message (Athlete)

 3 Receive Message (GUI)

 4 Unpackage

3
Input AP
Information

Once the athlete has
been created and
connection has been
made the Get AP
Identification DLL call is
made.

The return of this function
call is the ID of the APs
that are avaliable to the
DT.

If there are no APs or
only two or less then
prompt to the user the
problem with the AP
setup.

After AP IDs are gathered
a form will prompt the
user to input the location
and the transmitted signal
strenth of the APs.
Function 3 stores the
location and max AP
signal strength to be used
to calculate location and
speed.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 17 -

Table 4 outlines the systems sampling procedure

Graphical User
Interface VB

Graphical
User Interface

VB

Graphical User
Interface DLL Wi-Fi Diagnostic tool

 Forms Filled and
Buttons Pressed DLL Call Internal Function Message Function

4 Sample 1 Package

1.3.7
Receive Message
(Athlete)

 2 Send Message (GUI) 6 1.3.8 Unpackage

 1.3.9 Take PosiTrack Sample

 1.3.9.1 Get AP Signal Strength

1.3.9.2
Parse AP Signal
Strength

 1.3.9.3 Get Acceleration

 1.3.9.4 Parse Acceleration

 1.3.9.5 New Sample

1.3.9.6
Send PosiTrack
Samples

 1.3.9.6.1 Package

 3 Receive Message (GUI) 7 1.3.9.6.2 Send Message (Athlete)

4 Unpackage
5 New Sample

 1.3.9.7

If the number of
samples exceeds
MAX_SAMPLES then
call:
Append PosiTrack
Athletes Samples to File
Or If no file exists
Write PosiTrack Athletes
to File

If all setup is success full
then sampling may begin.

To start sampling the
user must be on the
correct athlete page and
must press the start
sampling button. (see the
GUI section)

If the sample takes to
long to aquirer then the
fuction will time out and a
new sample request will
be sent.

This function will return a
success or failure status
on the sample that is
being taken.

If the sample is
successful then the
location and speed will
be calculated and the
information will be
displayed to the user
using functions 5, 6, and

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 18 -

Table 5 outlines the system’s shut down procedures

Graphical User
Interface VB

Graphical User
Interface VB

Graphical User
Interface DLL Wi-Fi Diagnostic tool

 Forms Filled and
Buttons Pressed DLL Call Internal Function Message Function

8
Shutdown
Diagnostic Tool 1 Package

1.3.10

Receive Message
(Athlete)

 2 Send Message (GUI) 8 1.3.11 Unpackage

 1.3.12 Delete PosiTrack Athlete

 1.3.13 Package

 3 Receive Message (GUI) 9 1.3.14 Send Message (Athlete)

9 Delete Athlete 4 Unpackage

When the program is
shutdown the GUI sends
a shut down message to
the DT. The DT response
by removing its data and
replying and exiting the
program. The GUI then
deallocates its memory
using 9 and 10.

 1.3.15

10 Delete Samples

Disconnect to GUI
Client

 1.3.9.8

If the number of
samples exceeds
MAX_SAMPLES then
call:
Delete All Samples

5 Get Acceleration 6

If the number of samples
exceeds MAX_SAMPLES
then call:
Append PosiTrack Athletes
Samples to File
Or If no file exists
Write PosiTrack Athletes to
File

6 Generate Location

using functions 5, 6, and
7 to gather the data.

7 Generate Speed
See Section 3.3.4.2.
Algorithms

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 19 -

2.5.2. Messages

Defined in the tables 2-5 above are messages that are passed between the GUI and the
DT. These messages are sent over a Wi-Fi connection that uses TCP/IP to pass data
packets. In this section the packets will be defined.

All packets start with a command byte which tells the program what actions should be
taken. These commands are defined in table 6 below. Table 7 describes each message in
tables 2-5. The message number in table 7 corresponds to that in the tables above.

Table 6 defines the message commands

Command Value (Hexadecimal)
END_SAMPLE 0x00

ATHLETE_INFO 0x01
AP_INFO 0x02

SIGNAL_STRENGTH 0x04
ACCELERATION_LIN 0x08

ACCELERATION_LIN_ER
ROR

0x10

ACCELERATION_ROT 0x20
ACCELERATION_ROT_E

RROR
0x40

HEART_RATE 0x80
SHUTDOWN 0xFF

START_SAMPLE (SIGNAL_STRENGTH |
ACCELERATION_LIN |
ACCELERATION_ROT | HEART_RATE |
ACCELERATION_LIN_ERROR |
ACCELERATION_ROT_ERROR)

Table 7 defines the messages sent

Message Command Description

1 The first message is not actually a message but a
connection that is being made.

2 ATHLETE_INFO This message sends the athlete information to the DT
so the athlete class can be created on the DT. This
functionality will be useful is a distributive system is
created in the future. A distributive system is one in
which the DT will generate the location it self
through calculations.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 20 -

3 ATHLETE_INFO This is a confirmation message that the Athlete has
been created and the DT is connected.

4 AP_INFO This message from the GUI to the DT is a request for
the AP IDs that are sensed by the DT.

5 AP_INFO The DT sends this message to the GUI with the AP
IDs it has sensed. This is the response message to the
previous request.

6 START_SAMPLE The GUI is requesting a sample with this message.
7 START_SAMPLE The DT responds to the GUI request with the data

that is in requested in the START_SAMPLE
command. This command can be defined in different
ways to return different data such as signal strength,
and acceleration.

8 SHUTDOWN This message requests the DT to shutdown its
program and deallocate memory.

9 SHUTDOWN This is the confirmation message that the DT will
shutdown its program and deallocate memory.

Message time outs are handled by the Send Message and Receive Message functions. For
all commands other than START_SAMPLE the message will time out after 5 seconds
and the message will be resent 3 times before external action takes place. For AP_INFO,
and ATHLETE_INFO after three retries the GUI will prompt the user and error message.
For the command SHUTDOWN the GUI will assume the DT is off and will shut down.
For the START_SAMPLE command the timeout will be 1 second and there will have to
be 20 consecutive time outs before the GUI prompts to the user an error message. These
time outs and retries are to ensure proper data transfer and program execution. The
numbers are not set in stone and will be optimized during testing.

The next section defines two functions used for data packaging.

2.5.3. Packaging

This section defines the functions to create and disassemble the data packets which are
sent by the messages defined above. Both are common to the GUI DLL and the DT. This
allows the messages to be sent in bytes and not certain data types thus making the
messaging system portable. This portability is needed because we are using two OSs:
Linux and Windows.

Packaging
File: Packaging.c

Functions:

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 21 -

Package

Function: Package

File: Packaging.c Includes: -

Description: This function places data of all types into a char buffer to be sent in a
message.

Inputs: The buffer to fill and a list of data to fill it.

Outputs: The size of the buffer

Called By: Shutdown Diagnostic Tool, Take PosiTrack Sample, Sample, Get AP
Identification, Send PosiTrack AP Information, Create PosiTrack Athlete,
Receive PosiTrack GUI Commands

Definition: size_t package(unsigned char *buf, char *format, ...);

Unpackage

Function: Unpackage

File: Packaging.c Includes: -

Description: When messages are received this function is called

Inputs: The buffer filled with data and a list of data to be filled.

Called By: Shutdown Diagnostic Tool, Sample, Get AP Identification, Create
PosiTrack Athlete, Receive PosiTrack GUI Commands

Definition: void unpackage(unsigned char *buf, char *format, ...);

2.5.4. Athlete Class

The Athlete class contains the data about the athlete. The data is used for making the
GUI-DT connection, and storing appropriate data for localization. The class has a linked
list of samples. This list allows of rapid access and maneuverability through the sample
list. Below are the class and the definitions of the objects and functions.

Class CAthlete
File: Athlete.cpp

class CAthlete {
 public:
 //
 int portNumber;
 char * iPAddress;
 int * connectionHandle

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 22 -

 int playerID;
 string playerName;
 int playerWeight;
 int playerHeight;

 int numberOfSamples;
 CSample * startPointerSample;
 CSample * currentPointerSample;
 CSample * endPointerSample;

 int newSample (CSample newSample);
 void deleteAllSamples ();
};

Variables and Data Structures:

Port Number

Object: Port Number

File: Athlete.cpp Includes: NA

Class: CAthlete Scope: Public

Description: This is the port that the communication will take place on.

Used By: Connect to Athlete Server, Connect PosiTrack Athlete to GUI,

Definition: int portNumber;

IP Address

Object: IP Address

File: Athlete.cpp Includes: NA

Class: CAthlete Scope: Public

Description: The IP address of the DT (the GumStix)

Used By: Connect to Athlete Server,

Definition: char * iPAddress;

Connection Handle

Object: Connection Handle

File: Athlete.cpp Includes: NA

Class: CAthlete Scope: Public

Description: The handle of the socket that the communication is on between the GUI and
the DT.

Used By: Send Message, Receive Message

Definition: int * connectionHandle

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 23 -

Player ID

Object: Player ID

File: Athlete.cpp Includes: NA
Class: CAthlete Scope: Public

Description: Also referred to as the Athlete ID

Definition: int playerID;

Player Name

Object: Player Name

File: Athlete.cpp Includes: NA
Class: CAthlete Scope: Public

Description: The name of the athlete. This is used by the GUI when presenting the data.

Definition: string playerName;

Player Weight

Object: Player Weight

File: Athlete.cpp Includes: NA
Class: CAthlete Scope: Public

Description: This piece of information can be used along side the IMU measurement to
produce force data.

Definition: int playerWeight;

Player Height

Object: Player Height

File: Athlete.cpp Includes: NA

Class: CAthlete Scope: Public

Description: This piece of information is to be used in junction with the location of
the APs (in height) to calculate the location of the DT.

Definition: int playerHeight;

Number of Samples

Object: Number of Samples

File: Athlete.cpp Includes: NA

Class: CAthlete Scope: Public

Description: Describes the number of samples in the linked list.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 24 -

Definition: int numberOfSamples;

Start Pointer Sample

Object: Start Pointer Sample

File: Athlete.cpp Includes: NA

Class: CAthlete Scope: Public

Description: The starting pointer of the linked sample list.

Definition: CSample * startPointerSample;

Current Pointer Sample

Object: Current Pointer Sample

File: Athlete.cpp Includes: NA

Class: CAthlete Scope: Public

Description: The current pointer to the linked sample list.

Definition: CSample * currentPointerSample;

End Pointer Sample

Object: End Pointer Sample

File: Athlete.cpp Includes: NA

Class: CAthlete Scope: Public

Description: The end pointer of the linked sample list.

Definition: CSample * endPointerSample;

Functions:

New Sample

Function: New Sample

File: Athlete.cpp Includes: -

Class: CAthlete Scope: Public
Description: This function adds a new sample to the end of the linked list.

Inputs: The new sample

Outputs: Number of samples

Definition: int newSample (CSample newSample);

Delete All Samples

Function: Delete All Samples

File: Athlete.cpp Includes:

Class: CAthlete Scope: Public

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 25 -

Description: This function deletes all the samples in the linked list.

Definition: void deleteAllSamples ();

2.5.5. Sample Class

This class defines the samples that are measured and the data space that is used to store
the calculated data such as location and speed. Listed below are the definitions of the
components of the Sample class.

Class CSample
File: Sample.cpp

class CSample {
 public:
 //pointer to next sample

 CSample *nextSample;
 //pointer to previous sample

 CSample *previousSample;

 // The amount of time taken to sample

 double duration;
 // Start of sample

 time_t startTime;
 // End of sample

 time_t endTime;
 std::string dateStamp;

 // Measured Data

 struct signal *sig;
 int numberOfSignals;
 struct acceleration accel;
 struct heartRate heartRate;

 // Calculated Data

 struct velocity velo;
 struct location loca;
};

Variables and Data Structures:

Next Sample

Object: Next Sample

File: Sample.cpp Includes: NA

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 26 -

Class: CSample Scope: Public

Description: The pointer to the next sample in the linked list.

Definition: CSample *nextSample;

Previous Sample

Object: Previous Sample

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: The pointer to the previous sample in the linked list.

Definition: CSample *previousSample;

Duration

Object: Duration

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: The length of time required to generate a sample.

Definition: double duration;

Start Time

Object: Start Time

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: The time just before a sample is taken.

Definition: time_t startTime;

End Time

Object: End Time

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: The time just after a sample is taken.

Definition: time_t endTime;

Date Stamp

Object: Date Stamp

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: The human time at when the sample was taken.

Definition: std::string dateStamp;

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 27 -

Signal

Object: Signal

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: A structure that holds the AP’s ID, Signal Strength and time when the RSS
measurement was made.

Definition: struct signal *sig;

struct signal {
 int strength; // signal Strength of the sampled AP

 int ssid; // ID of the sampled AP

 time_t timeSS; // Time when the signal was sampled
};

Number of Signals

Object: Number of Signals

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: Defines how many access points are sensed to make a sample (3)

Definition: int numberOfSignals;

Acceleration

Object: Acceleration

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: This structure contains the acceleration data made be the IMU.

Definition: struct acceleration accel;

struct acceleration {
 // time when sampled linear acceleration

 struct timeDimension linTime;
 // time when sampled rotational acceleration

 struct timeDimension rotTime;
 // Values of rotational acceleration

 struct dimension rot;
 // Values of rotational acceleration error

 struct dimension rotError;
 // Values of linear acceleration

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 28 -

 struct dimension lin;
 // Values of linear acceleration error

 struct dimension linError;
};

Velocity

Object: Velocity

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: Stores the velocity of the DT.

Definition: struct velocity velo;

struct velocity
{
 struct dimension rot; // Values of rotational velocity

 struct dimension rotError; // Values of rotational velocity
 struct dimension lin; // Values of linear velocity
 struct dimension linError; // Values of linear velocity

int linearSpeed; // Magnitude of velocity

 int linearSpeedError; // Magnitude of Error in velocity
 int rotationalSpeed; // Magnitude of velocity
 int rotationalSpeedError; // Magnitude of Error in velocity
};

Location

Object: Location

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: This structure hold the location data.

Definition: struct location loca;

struct location {
 struct dimension location; // Cartesian coordinate location

 struct dimension locationError; // Cartesian coordinate error
};

Time Dimension

Object: Time Dimension

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 29 -

Description: This structure defines time in three coordinates X, Y, Z.

Definition: See below

struct timeDimension {
 time_t X; // Sampled time for X component

 time_t Y; // Sampled time for Y component

 time_t Z; // Sampled time for Z component
};

Dimension

Object: Dimension

File: Sample.cpp Includes: NA

Class: CSample Scope: Public

Description: This structure defines data in Cartesian coordinates.

Definition: See below

struct dimension {
 double X; // Values of X component
 double Y; // Values of Y component
 double Z; // Values of Z component
};

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 30 -

3. Sub-Component Design

This section contains the design specifications for each sub-component in the
PosiTracker system: The Diagnostic Tool, The Access Points, and The Graphical User
Interface. The functionality with respect to the system will be given followed by a
detailed description of the implementation for each component.

3.1. Diagnostic Tool
The main functionality of the Diagnostic Tool is to provide the GUI with data such as the
acceleration, location, and speed of each athlete. This data will be sent over a wireless
link between the player and the GUI. The data will be obtained through monitoring the
RSSI of each AP and the data provided by the IMU.

3.1.1. Gumstix Overo Fire COM

At the heart of the Diagnostic tool will be the Gumstix Overo Fire Computer on Module
(COM). This is a small module containing an OMAP 3530 applications processor, a
Wi2Wi wireless chip, an integrated power management chip, and an SD card holder. The
OMAP processor will run the diagnostic tool software which will collect the wireless
data and A/D data. Figure 5 below shows the Overo Fire with each component outlined.
The dimensions of the COM are 58mm x 17mm x 4.2mm (approximately the size of a
gumstick) and it weighs 5g.

Figure 5: The Gumstix Overo Fire Computer on Module (COM). [11]

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 31 -

The Gumstix Overo Fire COM was chosen for the following reasons:

1. It is intended for embedded applications as it is low power, light weight, and

has extremely small dimensions. The actually weight of module is 5g and its
dimensions are 58mm x 17mm x 4.2mm which easily meets the requirements for
both a final product and prototype. The power consumption of the module with
WiFi turned on and transmitting continuously is 390mA [12] [13]. Using a
standard Iphone 3G battery of 1150mAh the module would run for 2.9hours. This
meets the needs of both a final product and a prototype as this is an absolute worst
case scenario. A final product could also increase the battery life by using a
slightly larger battery.

2. It is extremely powerful and performance will not limit our possibilities when

developing our proof-of-concept device. The processor used on the module is
extremely powerful and is commonly used in cell phones. This means it has more
computing power than ever needed for this application. This is very important for
two reasons: the system should not be limited by what the hardware can do, and
the system should not require the GUI to do all of the calculations. The latter is
more of an issue in the final product as multiple athletes will be sending data to
the GUI.

3. It is powerful enough to run Linux. As a result of the module being so
powerful, it is able to run the Linux kernel. This is very important as it allows
access to essentially endless open source software and device drivers. This is
important as it will reduce development time dramatically through using pre-
existing device drivers for WiFi, BlueTooth(final product only), and the A/D
converters. This is an excellent advantage as device drivers are time consuming to
write. The module is ready to go as it comes preflashed with Linux 2.6.31 or
higher.

4. It has built in WiFi, BlueTooth, and A/D converters built in. This is important
as the hardware for each of these is needed to collect the data from each athlete.
The WiFi is responsible for obtaining signal strength and also creating a wireless
link to the GUI. The A/D converters are required to obtain the acceleration and
rotational data from the IMU. The BlueTooth is not used in the prototype but in
the final product will be used to communicate with a heart rate monitor for each
athlete.

5. There is an established Gumstix development community and it is a proven

product for embedded applications. Gumstix is a trusted company and has an
entire community developing various embedded applications with the Gumstix
product line. The PosiTrack team hopes to leverage the experience of this
community when developing both our product and prototype.

6. PosiTrack team has direct access to an individual with Gumstix development

experience. One of our group members has direct access to someone who has

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 32 -

experience with Gumstix development. The team will take advantage of this
relationship to dramatically reduce our development time.

7. There are various expansion boards that allow for debugging and pin

breakout. These boards will allow us to easily debug through USB, serial, or
Ethernet. They will also allow for the IMU and battery power to be easily
connected through a 40-pin expansion header. This board is very large compared
to the Gumstix and will be used in the prototype only. For the final product a
custom breakout board will be created to connect power and the IMU. The
expansion board is discussed in more detail in the next section.

8. It is highly versatile and reusable. This was important initially in order to secure
funding from the Engineering Student Society Endowment Fund. It also allows
for easy hardware changes because the module is so versatile. For example in the
final product a GPS could easily be attached to the I2C or SPI ports with very
little changes.

9. It could be used in the final product. Depending on the price point of our final
product this module could definitely be used. A competitor, VX Sport, has priced
their modules between $1300 and $1500. The final product would be competitive
with this retail price [14].

As an alternative to the Over Fire COM, the team considered using various
microcontrollers but they are not as powerful and compact (with respect to breakout
boards) as the Overo. Microcontrollers do however consume less power, but as shown
above, the power consumption of the Overo will meet our requirements. The final
drawback is that microcontrollers do cost substantially less than the Overo, but the final
product would still be priced competitively to similar products in the market.

Key features of the Over Fire COM:

o OMAP 3530 Applications Processor with ARM Cortex-A8 CPU

o Draws ~250mA @ 4V (1W) with WiFi and BlueTooth disabled [12]

o Draws ~390mA @ 4V (1.6W) with WiFi transmitting continuously [13]

o 600 MHz, 256MB Ram, 256MB Flash

o I2C, SPI, UART

o Six 10bit Analog to Digital lines (located on TPS65950)

o 802.11(g) and Bluetooth®

o Dimensions 58mm x 17mm x 4.2mm

o Weighs 5g including micro SD card

o Runs Linux Kernel, comes with WiFi / BlueTooth drivers

o Built in power management, and micro SD card slot

o Various expansion boards available for debugging and pin breakout

o Preflashed with Linux 2.6.31 or higher

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 33 -

3.1.2. Gumstix Tobi Expansion Board

The Gumstix Tobi expansion board must be attached to the Overo Fire in order for
debugging and access to the 40-pin expansion header. This will allow for direct
development /debugging of software on the Gumstix using the USB, UART, or Ethernet
ports. It will also allow for the battery and the IMU to be easily connected via the 40-pin
expansion header. The Tobi expansion board can be seen in Figure 6 below with the
relevant parts outlined. The dimensions of the board are 105mm x 40mm x 12mm and it
weighs 28g.

Figure 6: Gumstix Tobi Expansion Board. [15]

This expansion was the chosen board over some of the smaller and more condensed
versions because of the extra debugging ability. In particular we wanted Ethernet so that
we could mount network drives and use SSH (Secure Shell). The first allows us to easily
develop and compile our code on another machine and the second allows us to remotely
run shells on the Gumstix. This can be done over the WiFi link but since some work is
going to be done possibly modifying the Wireless drivers we also need a physical link.

For the final product none of these debug connections are needed and a custom

expansion board could be dramatically smaller. Since the design time is so short a

custom expansion board will not be designed. The Tobi board is still a reasonable

size to create a working prototype, but would not be used in the final product.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 34 -

Key features of Gumstix Tobi Expansion board:

o Debug ability through the USB,UART, and Ethernet ports

o 40-pin expansion header that allows battery and IMU to be connected

o TI TPS62111 integrated power management chip

o 40-pin expansion header also allows access to I2C and SPI ports

o Dimensions are 104mm x 40mm x 12mm

o Weighs 28g, and 33g with Overo Fire COM

o Board schematics are available for download from the Gumstix website [16]

o It also has 2 audio jacks and an HMDI jack that will not be used

The table below gives a detailed pin description of the 40-pin expansion header and most
of these signals connect directly to the OMAP 3530 processor on the COM. The signal
V_BATT connects to the TPS62111 power management chip and will be used to connect
the battery. The signals VCC_3.3 and VCC_1.8 are outputs of the power management
chip. The signals ADCX and AGND are for the A/D lines, they connect to the TPS65950
power management chip on the Overo Fire COM.

Table 8: 40-pin Expansion Header Pin Descriptions. [17]

 Signal Pin Pin Signal

V_BATT 40 39 ADCIN4

ADCIN3 38 37 AGND

ADCIN5 36 35 ADCIN6

ADCIN2 34 33 ADCIN7

PWM1 32 31 PWM0

GPIO144_PWM9 30 29 GPIO147_PWM8

GPIO145_PWM10 28 27 GPIO146_PWM11

VCC_1.8 26 25 GND

GPIO185_SDA3 24 23 GPIO184_SCL3

GPIO166_IR_TXD3 22 21 GPIO165_IR_RXD3

GPIO163_IR_CTS3 20 19 GPIO170_HDQ_1WIRE

GPIO127_TS_IRQ 18 17 GPIO128_GPS_PPS

VCC_1.8 16 15 GND

POWERON 14 13 GPIO0_WAKEUP

VBACKUP 12 11 SYS_EN

GPIO148_TXD1 10 9 GPIO151_RXD1

GPIO175_SPI1_CS1 8 7 GPIO173_SPI1_MISO

GPIO174_SPI1_CS0 6 5 GPIO172_SPI1_MOSI

GPIO114_SPI1_NIRQ 4 3 GPIO171_SPI1_CLK

VCC_3.3 2 1 GND

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 35 -

3.1.3. Sparkfun 6-DOF IMU

The Sparkfun 6 Degrees of Freedom (DOF) Inertial Measurement Unit (IMU) provides
the Overo Fire COM with analog acceleration and gyroscope data. It has 6-DOF because
it provides 3-axis (x,y,z) acceleration and gyroscope data. There are 6 wires that will
connect this board to the 40-pin expansion header on the Tobi expansion board. The 40-
pin header then connects the analog lines to the COM’s integrated power management
unit (TPS69650) which contains the 6 A/D converters. The power management unit
sends the data back to the OMAP processor through the processors GPIO ports. The
Sparkfun board contains a 3-axis accelerometer (ADXL335), a 2-axis gyroscope
(LPR530AL) and a 1-axis gyroscope (LY530ALH). The Sparkfun board can be seen in
Figure 7 below with the relevant parts outlined. The dimensions of the IMU board are
35mm x 17mm x 3mm and it weighs 2g.

Figure 7: Sparkfun 6-DOF IMU. [18]

The purpose of the IMU is to provide acceleration and gyroscope data in order to dead
reckon the athletes location. Dead reckoning is simply using current direction and speed
to determine future location. Keeping this in mind, the Sparkfun IMU was chosen based
on reasonable sensitivity, working range, and cost. The main specifications are outlined
in the table below.

Table 9: Sparkfun 6-DOF IMU Specifications. [19] [20] [21]

Signal Sensitivity Supply Zero Bias Current Range Bandwidth

3-Axis Accel
ADXL335

300 mV/g 1.8 - 3.6V 1.5V 0.35mA ±3G
1600Hz (x-y)

550Hz (z)

2-Axis Gyro
LY530ALH

0.83 mV/°S
3.33 mV/°S

1.8 - 3.6V 1.23V 6.8mA ±300°/s 140Hz

1-Axis
LPR530AL

0.83 mV/°S
3.33 mV/°S

1.8 - 3.6V 1.23V 5mA ±300°/s 140Hz

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 36 -

The Sparkfun IMU was chosen mainly to reduce development time as the breakout board
is already designed and pre-assembled. The sensitivities are also appropriate for dead
reckoning but the range on the accelerometer is too small to be useful in large impacts.
This range can be increased but only at the cost of sensitivity at low accelerations. Since
dead reckoning is more important to our project, optimizing the accelerometer for it
instead of impact detection was chosen. For the final product a custom breakout board
with the IMU directly on it can replace the Tobi board. On the final product another
accelerometer with a higher working range can also be added to the SPI interface for
impact detection.

The voltage provided by Li-Ion batteries is approximately 3.7-3.9V, which is too high to
power the IMU. However, the 3.3V supply on the 40-pin expansion header can be used; it
is provided by the Tobi onboard power management (TPS62111). The typical power
consumption of the IMU is 13mA.

3.1.4. Li-Ion Battery and Charger

To power the Overo Fire COM, Tobi Board, and Sparkfun IMU, the design will use a
3.7V 1000mAh Li-Ion battery. In order to charge the battery the design uses the
Maxim1555 Li-Ion Battery Charger. This chip is needed in order to prevent the over
charging of the batteries. The battery and the Maxim1555 Charge Board can be seen in
Figure 8 below. The dimensions of the battery are 53mm x 33mm x 5.7mm and it weighs
21g. The dimensions of the board are 37mm x 37mm x 6mm and weighs 5g.

Figure 8: Li-Ion Battery and Maxim1555 Charge Board. [22] [23]

The Maxim1555 has a maximum charge current of 280mA when a DC wall adapter is
used. This means the charge board will take 3.6hours to charge the 1000mAh battery.
The total current draw of the entire module with the WiFi transmitting continuously and
the IMU attached is 403mA. This means that the battery life for the 1000mAh battery
will be approximately 2.5hours. The charge time and battery life are not ideal for the final
product but are more than satisfactory for the proof-of-concept device. The charge time
can be improved by using a higher current charging chip and the battery life can be
extended by using a larger battery. Also, in the final product the charging chip will be

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 37 -

included directly onto the custom breakout board (Tobi replacement) which will be
attached to the Overo Fire.

3.1.5. Diagnostic Tool Schematic

The schematic showing the connections between the Overo Fire COM, the Tobi
expansion board, the IMU, the Li-Ion battery, and the Li-Ion charger are shown in Figure
9 below. More detailed schematics can be found on the Gumstix and Sparkfun website
and are listed in the reference section [16] [24] [25].The schematic for the Overo COM is
not included as it is proprietary information; however, a detailed description of the
signals can be found in the reference section [26].

Figure 9: Diagnostic Tool Schematic.

The ADCIN(2,3,4,5,6,7) signals from the IMU are connected to the 40-pin expansion
header which then connects them to the Overo Fire COM. On the Overo they are
connected to the power management chip (TPS65950) containing the A/D converters.
The IMU’s 3.3V supply voltage is created by the Tobi expansions boards’ power
management chip (TPS62111). The 40-pin header is defined in Table 10. The Charger
signals VBATT and GND connect to the power management chip on the Tobi board.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 38 -

3.1.6. Diagnostic Tool-Casing and Strap

This section will discuss the DTs casing for both a proof-of-concept device and a final
product. A proposed strap is also introduced that could be used in the final product in
order to attach the DT onto the athlete. Table 1 below summarizes the physical
characteristics of each sub-component in the DT and also includes a potential casing for
the proof-of-concept device. The final entry in the table contains the weight and
dimensions of the prototype using this casing. This casing is a small case that Gumstix
provided with the Tobi expansion board and it can easily be modified to be used in the
proof-of-concept device.

Table 10: Summary of the relevant physical information of the DTs sub-components

Component Weight Dimensions

Overo Fire COM 5g 58mm x 17mm x 4.2mm

Tobi Expansion Board 28g 105mm x 40mm x 12mm

Sparkfun 6-DOF IMU 2g 35mm x 17mm x 3mm

Maxim1555 Charge Board 5g 37mm x 37mm x 6mm

3.7V 1000mAh Li-Ion Battery 21g 53mm x 33mm x 5.7mm

WiFi Antenna 6g Cylinder: R = 4mm , L = 80mm

Gumstix Tobi Casing 38g 110mm x 51mm x 21mm

Diagnostic Tool Prototype 105g 110mm x 51mm x 21mm

Using the Tobi boards casing, the prototype will have a total weight of 105g and
dimensions of 110mm x 51mm x 21mm. This includes the Overo Fire, Tobi board, Wi-Fi
antenna, battery, charging module, and IMU contained inside. This fits the functional
requirements for it being both small and lightweight so it will be unobtrusive the athlete
wearing it. Figure 10 below shows a Solidworks CAD drawing of the all of the
components placed inside of the prototypes casing. This figure allows for a visualization
of how each component will be placed inside of the casing. Figure 11 below shows how
the final product or prototype could be potentially attached to the athlete. In this figure
the DT is clipped into a holster located on the athletes protective gear or clothing.
Alternatively, the DT could be attached to the player with straps similar to a backpack.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 39 -

Figure 10: Solid works drawing of the entire Diagnostic Tool Module.

Figure 11: Hockey armor with Diagnostic Tool attached to the back.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 40 -

3.1.7. Diagnostic Tool Software
The figure below outlines the start up software algorithm to be implemented on each
athlete’s Diagnostic Tool.

Figure 12: Diagnostic Tool Software Start Up Algorithm.

When the diagnostic tool is turned on, or given power, it will boot Linux from its flash
memory. The boot script will be modified to allow for the Wireless module and A/D
module to be loaded automatically into the kernel. These modules are device drivers that
will enable access to the Wireless chipset and the IMU. Once Linux has loaded, a simple
script will execute through the boot log to ensure that the modules have loaded properly,
if not the tool will reboot. If there are no errors, the script will create a Wi-Fi connection

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 41 -

to the created WLAN that consists of one of the AP. After the connection is established
the main program is loaded.

3.1.7.1 PosiTrack Athlete Executable

The executable that is run after startup in figure 12 is defined here. The functions that this
executable calls are listed below.

PosiTrack Athlete
File: PosiTrackAthlete.cpp

Functions:

Main Program

Function: Main

File: PosiTrackAthlete.cpp Includes: -

Description: This is the application entry point for the DT PosiTrack Athlete program.

Calls: Start Up PosiTrack Athlete, Connect PosiTrack Athlete to GUI, Receive
PosiTrack GUI Commands

Definition: int main();

Start Up PosiTrack Athlete

Function: Start Up PosiTrack Athlete

File: PosiTrackAthlete.cpp Includes: -

Description: This function is run at start up to initialize variables and to facilitate start up.

Called By: Main

Definition: void startUpPosiTrackAthlete();

Connect PosiTrack Athlete to GUI

Function: Connect PosiTrack Athlete to GUI

File: PosiTrackAthlete.cpp Includes: -

Description: This function facilitates the connection procedure when connecting to the
GUI.

Outputs: Connection handle to the socket

Calls: Connect To GUI Client

Called By: Main

Definition: int * connectPosiTrackAthleteToGUI ();

Receive PosiTrack GUI Commands

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 42 -

Function: Receive PosiTrack GUI Commands

File: PosiTrackAthlete.cpp Includes: -

Description: The purpose of this function is to receive the messages and act accordingly
to the command.

Calls: Receive Message (Athlete), Unpackage, Create PosiTrack Athlete, Package,
Send Message (Athlete), Send PosiTrack AP Information, Take PosiTrack
Sample, Delete PosiTrack Athlete

Called By: Main

Definition: void receivePosiTrackGUICommands ();

Create PosiTrack Athlete

Function: Create PosiTrack Athlete

File: PosiTrackAthlete.cpp Includes: -

Description: The purpose of this function is to initialize and fill the Athlete class.

Outputs: A pointer to the Athlete class

Called By: Receive PosiTrack GUI Commands

Definition: CAthlete *createPosiTrackAthlete (int playerID, string playerName, int
playerWeight, int playerHeight , int * connectionHandle);

Delete PosiTrack Athlete

Function: Delete PosiTrack Athlete

File: PosiTrackAthlete.cpp Includes: -

Description: This function deallocates memory that is taken by the Athlete class.

Inputs: A pointer to the Athlete class

Called By: Receive PosiTrack GUI Commands

Definition: void deletePosiTrackAthlete (CAthlete * athlete);

Send PosiTrack AP Information

Function: Send PosiTrack AP Info

File: PosiTrackAthlete.cpp Includes: -

Description: This function facilitates the sending of the AP IDs that are sensed by the
DT.

Calls: Get AP Signal Strength, Parse AP Signal Strength, Package, Send Message
(Athlete),

Called By: Receive PosiTrack GUI Commands

Definition: void sendPosiTrackAPInfo (CAthlete * athlete);

Send PosiTrack Samples

Function: Send PosiTrack Samples

File: PosiTrackAthlete.cpp Includes: -

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 43 -

Description: This function performs the task of setting up the message to send and
sending the message.

Inputs: A pointer to the Athlete class, the Sample class and the number of sample to
send in the packet.

Outputs: A pointer to the last sample sent on the link list.

Calls: Package, Send Message (Athlete),

Called By: Take PosiTrack Sample

Definition: CSample * sendPosiTrackSample (CAthlete * athlete, CSample *
currentSample, int numberOfSamplesToSend);

Take PosiTrack Sample

Function: Take PosiTrack Sample

File: PosiTrackAthlete.cpp Includes: -

Description: This function facilitates the sampling of desired measurements and sending
the samples to the GUI. This function is also responsible for memory
management.

Inputs: A pointer to the Athlete class and the Sample class.

Calls: Get AP Signal Strength, Parse AP Signal Strength, Get Acceleration, Parse
Acceleration, New Sample, Send PosiTrack Samples, Write PosiTrack
Athletes to File, Delete All Samples

Called By: Receive PosiTrack GUI Commands

Definition: void takePosiTrackAthlete (CAthlete * athlete, CSample * currentSample);

Parse AP Signal Strength

Function: Parse AP Signal Strengths

File: PosiTrackAthlete.cpp Includes: -

Description: This function takes the measure AP signal strength and converts the format
and stores data into the appropriate location.

Inputs: A buffer that contains the APs signal strength IDs and values. A pointer to
the sample that needs to be filled with the buffer data.

Called By: Take PosiTrack Sample, Send PosiTrack AP Info

Definition: void parseAPSignalStrengths (char * buffer, CSample * currentSample);

Parse Acceleration

Function: Parse AP Signal Strengths

File: PosiTrackAthlete.cpp Includes: -

Description: This function takes the measure accelerometer data and converts the format
and stores data into the appropriate location.

Inputs: A buffer that contains the A pointer to the sample that needs to be filled
with the buffer data.

Called By: Take PosiTrack Sample,

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 44 -

Definition: void parseAcceleration (char * buffer, CSample * currentSample);

Write PosiTrack Athletes to File

Function: Write PosiTrack Athletes To File

File: PosiTrackAthlete.cpp Includes: <fstream>

Description: This function is used if the number of samples reach a maximum value the
samples can be stored in a certain file.

Inputs: A pointer to the athlete and the file name to be written to.

Outputs: Returns nothing

Calls: Nothing

Called By: Take PosiTrack Sample,

Definition: void writePosiTrackAthletesToFile (CAthlete * athlete, char *filename);

Display PosiTrack Samples

Function: Display PosiTrack Samples

File: PosiTrackAthlete.cpp Includes: <iostream>

Description: This function takes the class CAthlete and outputs the information that has
been put into the class to the terminal. The Athletes information, points to
its sample link list, and the list of samples to the terminal. Uses to tests the
CAthlete class and give confirmation of storage.

Inputs: A pointer to the athlete.

Called By: displayPosiTrackAthletes,

Definition: void displayPosiTrackSamples (CAthlete * athlete)

Display PosiTrack Athletes

Function: Display PosiTrack Athletes

File: PosiTrackAthlete.cpp Includes: <iostream>

Description: Displays the athlete information along with the samples.

Inputs: A pointer to the athlete.

Definition: void displayPosiTrackAthletes (CAthlete * athlete)

3.1.7.2 Measurement Tools

The measurement tools are functions that obtain data that is generated from the Linux
kernel modules. The modules include the Wireless module which measures the AP signal
strength and A/D module which generated the acceleration measurements.

Signal Strength
File: SignalStrength.c

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 45 -

Functions:

Get AP Signal Strength

Function: Get AP Signal Strengths

File: SignalStrength.c Includes: -

Description: This function was used to measure the signal strength from the APs.

Outputs: A character buffer that contains the AP IDs and corresponding signal
strengths.

Called By: Take PosiTrack Sample, Send PosiTrack AP Information

Definition: char * getAPSignalStrengths ();

Acceleration
File: Acceleration.c

Functions:
Get Acceleration

Function: Get Acceleration

File: Acceleration.c Includes: -

Description: This function was used to measure the linear and rotational acceleration of
the DT.

Outputs: A character buffer that contains the acceleration from all inertial
measurement units.

Called By: Take PosiTrack Sample

Definition: char * getAcceleration();

3.1.7.3 Message Passing

This software block is used to generate a connection from the DT to the GUI with TCP
socket. The following functions also send and receive messages and facilitate the
disconnection.

Server Athlete
File: ServerAthlete.c

Functions:

Connect to GUI Client

Function: Connect To GUI Client

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 46 -

File: ServerAthlete.c Includes: -

Description: This function initializes a socket and binds the process to a port for the GUI
client to connect to. Socket needs to be initialized and bound to enable
message passing over a network.

Inputs: Port number

Outputs: Connection handle

Called By: Connect PosiTrack Athlete to GUI

Definition: int connectToGUIClient(int argc);

Receive Message (Athlete)

Function: Receive Message

File: ServerAthlete.c Includes: -

Description: Receives a message on the socket which is sent by the GUI.

Inputs: The socket handle, a pointer to a buffer and the size of the buffer.

Called By: Receive PosiTrack GUI Commands

Definition: void recieveMessage (int sockethandle, char *buffer, int sizeOfBuffer);

Send Message (Athlete)

Function: Send Message

File: ServerAthlete.c Includes: -

Description: Writes a message to the socket which will be received by the GUI.

Inputs: The socket handle, a pointer to a buffer and the size of the buffer.

Called By: Send PosiTrack Samples, Receive PosiTrack GUI Commands, Send
PosiTrack AP Information

Definition: void sendMessage (int newsocketfd,char *buffer, int sizeOfBuffer);

Disconnect from GUI Client

Function: Disconnect to GUI Client

File: ServerAthlete.c Includes: -

Description: Terminates the connection and closes socket. Cleans socket connection so it
can be used upon next execution.

Inputs: The socket handle

Called By: Receive PosiTrack GUI Commands

Definition: void disconnectToGUIClient(int newsockfd);

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 47 -

3.2. Access Points
The AP’s main function is to provide an appropriate number of anchors for localization. The
access points will send detectable signals to the diagnostic tool to allow distance
approximation. The secondary function of the access points is to supply a wireless
communication link between the DT and the GUI.

In the proof-of-concept design, third party wireless routers will be used. Application specific
Wi-Fi access points could give better performance in a more compact packaging however,
this would have been too time consuming for our development schedule and would have
placed the project at a much higher budget point.

3.3. Graphical User Interface
This section describes the Graphical User Interface (GUI) design for the PosiTracker,
with design considerations being outlined in the respective subsections. The main
functionality of the GUI is to display the athlete information in a graphical, visual-
appealing format.

3.3.1. Overview of the Graphical User Interface

The OVERO Air Gumstix runs a Linux environment, and development for the Diagnostic
Tool is in Linux as well; however, due to the fact that most PC’s currently run Windows,
it was determined the GUI should be developed for Windows.

This does complicate development, since in developing for two different operating
systems, ActiveX controls need to be written in order to be able to access the functions
from the DT in the GUI. However, having the GUI running on Windows will ultimately
increase the marketability of the product. Coaches could simply install the application
that comes with the PosiTracker package on their existing machines, thus minimizing
additional costs associated with the acquisition of a machine running Linux, as well as
taking the time to get used to a new Operating System.

From past experience developing programs for Windows, Microsoft Visual Studio 2008
suite, Professional Edition, was the platform which was chosen; it is focused on the
development of Windows Vista programs. In particular, Microsoft Visual Basic will be
used for developing the GUI.

There are many reasons to support the choice for Visual Studio 2008 - among these are
the Code Editor, Debugger and Designer features that greatly aid in the development of
applications.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 48 -

3.3.2. Graphical User Interface-Layout

The GUI consists of several Windows Forms that are linked to each other. The program
itself consists of three modules, developed independently: the Game Analysis, Physical
Training and Tactical Training modules. The user is supposed to turn on the hardware
and start the program, and then a series of prompts will take the user to the module of
choice. The data flow is designed to be intuitive and the program, easy to use, as shown
by the flowchart in Figure 13.

Figure 13: GUI program flow.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 49 -

3.3.3. Graphical User Interface-Software Layout Interface

The connection between the Diagnostic Tool and the GUI is done via DLL’s. The DLL
exported function calls are defined in section 3.3.4. The DLL functions used to allow the
Diagnostic Tool to get all required user input, and the GUI to get all the positioning data
needed from the DT. The user input will be read through various mechanisms: combo
boxes, text boxes or numeric up-down displays. The screenshots below in figure 14 show
the intended layout design.

A. B.

C.
Figure 14: The Draft look of the GUI windows A, B, and C.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 50 -

3.3.4. Graphical User Interface-Software

The Graphical User Interface C++/C software generates a DLL that the GUI written in
VB links too. The exported DLL function calls used by the GUI are described below. The
algorithms are discussed and the message passing functions are defined.

3.3.4.1 PosiTrack GUI DLL

This section presents the functions defined in GUI DLL. These functions are called from
the VB GUI program

PosiTrack GUI
File: PosiTrackGUI.cpp

Functions:

Create PosiTrack Athlete

Function: Create PosiTrack Athlete

File: PosiTrackGUI.cpp Includes: -

Description: This function creates the athlete class in both the GUI DLL and the DT. It
does this by first filling the classing the GUI DLL. Then the function
connects to the DT with given port and IP address. Once connected the
athlete information is sent to the DT. It the function fails it returns a null
pointer.

Inputs: name, height, weight, port, IP address

Outputs: A pointer to the Athlete class

Calls: Connect to Athlete Server, Package, Send Message (GUI)

Called By: GUI VB program

Definition: CAthlete *createPosiTrackAthlete (int playerID, string playerName, int
playerWeight, int playerHeight);

Get AP Identification

Function: Get AP Identification

File: PosiTrackGUI.cpp Includes: -

Description: This function is used to receive the available APs measured from the DT.

Inputs: A pointer to the Athlete class

Outputs: Success(1) or failure(-1)

Calls: Package, Send Message (GUI), Receive Message (GUI), Unpackage

Called By: GUI VB program

Definition: int getAPID(CAthlete * athlete)

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 51 -

Input AP Information

Function: In AP Information

File: PosiTrackGUI.cpp Includes: -

Description: The user inputs the location and transmitted signal strength of the APs.

Inputs: The location of each AP and the corresponding access point ID.

Called By: GUI VB program

Definition: void inputAPInfromation(APData *APInfo, int numberOfAPs)

Sample

Function: Sample

File: PosiTrackGUI.cpp Includes: -

Description: This function calls the DT to take a sample and send it to the GUI.

Inputs: The athlete class where the sample will be added to.

Outputs: Success(1) or failure(-1)

Calls: Package, Send Message (GUI), Receive Message (GUI), Unpackage, New
Sample, Append PosiTrack Athletes Samples to File, Write PosiTrack
Athletes to File

Called By: GUI VB program

Definition: int sample (CAthlete * athlete)

Get Signal Strength

Function: Get Signal Strength

File: PosiTrackGUI.cpp Includes: -

Description: The VB GUI gets the signal strength from the DLL

Inputs: The athlete class where the RSS was added and the AP ID.

Outputs: Signal strength

Called By: GUI VB program

Definition: int getSignalStrength(CAthlete * athlete, int APID);

Get Acceleration

Function: Get Acceleration

File: PosiTrackGUI.cpp Includes: -

Description: Returns the acceleration to the GUI.

Inputs: The athlete class where the acceleration was added. A pointer to the
acceleration structure.

Outputs: Success(1) or failure(-1)

Called By: GUI VB program

Definition: int getAcceleration(CAthlete * athlete, acceleration * accel)

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 52 -

Generate Location

Function: Generate Location

File: PosiTrackGUI.cpp Includes: -

Description: Returns the location that has be calculated.

Inputs: The athlete class where the location is to be added. A pointer to a location
structure.

Outputs: Success(1) or failure(-1)

Calls: Calculate Location

Called By: GUI VB program

Definition: int generateLocation(CAthlete * athlete, location* loca;)

Generate Speed

Function: Generate Speed

File: PosiTrackGUI.cpp Includes: -

Description: This function returns the calculated speed of the DT to the GUI

Called By: GUI VB program

Definition: int generateSpeed(CAthlete * athlete, velocity * velo)

Shutdown Diagnostic Tool

Function: Shutdown diagnostic tool

File: PosiTrackGUI.cpp Includes: -

Description: This function sends a message to the DT asking it to shutdown.

Called By: GUI VB program

Definition: shutdownDiagnosticTool(CAthlete * athlete)

Delete Athlete

Function: Delete Athlete

File: PosiTrackGUI.cpp Includes: -

Description: This deletes all the athletes in the DLL.

Called By: GUI VB program

Definition: deleteAthlete(CAthlete * athlete)

Delete Samples

Function: Delete Samples

File: PosiTrackGUI.cpp Includes:

Description: This deletes all the sample stored in the athlete.

Definition: void deleteSamples(CAthlete * athlete)

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 53 -

Write PosiTrack Athletes to File

Function: Write PosiTrack Athletes To File

File: PosiTrackGUI.cpp Includes: <fstream>

Description: This function is used if the number of samples reach a maximum value the
samples can be stored in a certain file.

Inputs: A pointer to the athlete and the file name to be written to.

Outputs: Returns nothing

Calls: Nothing

Definition: void writePosiTrackAthletesToFile (CAthlete * athlete, char *filename);

Append PosiTrack Athletes Samples to File

Function: Append PosiTrack Athletes To File

File: PosiTrackGUI.cpp Includes: <fstream>

Description: Appends the samples to a preexisting file.

Outputs: Returns nothing

Calls: Nothing

Definition: void appendPosiTrackAthletesToFile (CAthlete * athlete, char *filename);

Display PosiTrack Samples

Function: Display PosiTrack Samples

File: PosiTrackGUI.cpp Includes: <iostream>

Description: This function takes the class CAthlete and outputs the information that has
been put into the class to the terminal. The Athletes information, points to
its sample link list, and the list of samples to the terminal. Uses to tests the
CAthlete class and give confirmation of storage.

Inputs: A pointer to the athlete.

Called By: displayPosiTrackAthletes,

Definition: void displayPosiTrackSamples (CAthlete * athlete)

Display PosiTrack Athletes

Function: Display PosiTrack Athletes

File: PosiTrackGUI.cpp Includes: <iostream>

Description: Displays the athlete information along with the samples.

Inputs: A pointer to the athlete.

Definition: void displayPosiTrackAthletes (CAthlete * athlete)

3.3.4.2 Algorithms

The functions and

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 54 -

Algorithms
File: Algorithms.cpp

Variables and Data Structures:

AP Data

Object: AP Data

File: Algorithms.cpp Includes: NA

Class: - Scope: global

Description: This data structure is use to hold the location of the APs, and the transmitted
signal strength. This data is used by the algorithm functions to determine the
location of the DT.

Used By: Calculate AP Radius, Calculate Circle Intersection

Definition: struct APData *APInfo

struct APData{
 char * APID; // access point ID
 struct dimension location; // location of AP
 int transmittedSignalStrength; // signal Strength at AP
};

struct dimension {
 double X; // Values of X component
 double Y; // Values of Y component
 double Z; // Values of Z component
};

Functions:

Calculate Location

Function: Calculate Location

File: Algorithms.cpp Includes: -

Description: This function uses the algorithms described in [6] [7] [9] [10] to calculate
the location of the DT from measured parameters.

Definition: calculateLocation()

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 55 -

Calculate Velocity

Function: Calculate Velocity

File: Algorithms.cpp Includes: -

Description: Uses the location and acceleration values to determine speed of the DT.

Definition: calculateVelocity()

3.3.4.3 Message Passing

This section is similar to the section 3.1.7.3. but for the GUI.

Client GUI
File: clientGUI.c

Functions:

Connect to Athlete Server

Function: Connect To Athlete

File: clientGUI.c Includes:

Description: Connects the GUI to the DT.

Definition: int connectToAthleteServer(int argc, char *argv);

Receive Message (GUI)

Function: Receive Message

File: clientGUI.c Includes:

Description: Receive Message from the DT.

Definition: void recieveMessage (int newsocketfd, char *buffer, int sizeOfBuffer);

Send Message (GUI)

Function: Send Message

File: clientGUI.c Includes:

Description: Sends a message to the DT.

Definition: void sendMessage (int newsocketfd,char *buffer, int sizeOfBuffer);

Disconnect from Athlete Server

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 56 -

Function: Disconnect to GUI Client

File: clientGUI.c Includes:

Description: Disconnects from the DT.

Definition: void disconnectFromAthleteServer(int newsockfd);

4. System Test Plan

4.1. Overview
The individual parts of our system will be tested first; after individual testing is complete
we will do integration testing.

The use of this plan will help ensure that the hardware and software development,
evaluation and acceptance standards are documented and followed.

For the software side of our project intends to perform the following types of tests:

- System Testing
o All code will be tested to ensure that the application performs the required

functions and outputs the required results.
o Testing ensures the proper operation of each module before moving on to

integrating the modules together.
- Integration Testing

o Integrate small parts of the application and test after each part has been
added.

o Each part must be fully tested and fixed before integrating it with the rest
of the application; this makes it easier to detect problems/bugs as well as
making it easier to fix the bugs.

For the hardware side of our project we want to ensure the system operates under regular
circumstances. Our environment is quite static, so we do not expect to encounter any
extreme situations.

4.2. Access Points Tests
In the case of the access points we plan to test that they emit signals, and that the signal is
stable within some limits.

Case 1: Wi-Fi signal strength measurement.

Testers Instructions: The tester will measure the Wi-Fi power at various
distances. Do this for each AP.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 57 -

Conditions: Indoors or outdoors, both with direct line of sight.

Expected Observation: As we are using similar routers as our AP’s, the signal
strength measurements should be very close in value for the same distance from the
measuring device.

Case 2: Wi-Fi signal strength measurement with 2 or more AP’s added

Testers Instructions: The tester will measure the Wi-Fi power at various distances
when more than one AP is set up.

Conditions: Indoors or outdoors, both with direct line of sight.

Expected Observation: The signal strength is not be affected by the interference
of other AP’s. The measurements should yield similar values to Case 1.

4.3. Gumstix Tests
The Gumstix is the device to be worn by the players, thus there are a few physical aspects
to be tested:

- The casing is water-resistant (the system will not be affected by the player
perspiration)

- The straps are comfortable to wear
- The batteries will last for at least 3 hours under intense usage

We will test the batteries by actually using the device for a few hours; we will test the
straps by asking a user to wear the Gumstix on their back while playing some kind of
sport.

4.4. Diagnostic Tool Tests
For the diagnostic tool we have to ensure the code compiles, as well as ensure the
functions work as expected, and output accurate results. We also need to ensure the
diagnostic tool is able to handle message passing between Linux and Windows.

Case 1: Connectivity test and message passing test.

Testers Instructions: The tester will send dummy messages between the Gumstix
and the GUI.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 58 -

Conditions: Indoors or outdoors, both with direct line of sight. All device
components should be turned on (computer, AP, Gumstix) and a wireless connection
should be established between the computer and the Gumstix.

Expected Observation: The tester should be able to send and receive messages
commands from the GUI to the Gumstix. This ensures the diagnostic tool is able to
handle message passing between Linux and Windows.

Case 2: Function call test.

Testers Instructions: The tester will test several function calls, from Linux and
from the GUI.

Conditions: Indoors or outdoors, both with direct line of sight. All device
components should be turned on (computer, AP, Gumstix) and a wireless connection
should be established between the computer and the Gumstix.

Expected Observation: This test ensures the tester is able to perform tasks such as
getting the speed of a particular athlete, or shut down the system, from the GUI.

4.5. Graphical User Interface Tests
With the Graphical User Interface, we want to ensure the following:

1. Is the application easy to learn? What about the usability of our design? Are
menus/buttons/displays where the user would expect them to be?

2. Are there any exceptions that haven’t been handled? Will anything crash the
program?

We will provide answers to the questions above by performing two additional types of
tests on the GUI:

- User testing
o As soon as the GUI is fully developed, a person outside the development

group will test the application
o Provides some feedback on the usability of the system

- Automated Unit Testing
o Using the tools provided by Microsoft Visual Studio 2008
o AUT ensures that there are no unhandled exceptions

Below are some of the tests we will perform on our GUI:

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 59 -

Case 1: Installation, start up, menu browsing and shut down.

Testers Instructions: The tester will install the application, then start it, browse
through the menus and exit.

Conditions: Indoors or outdoors; need to use a computer running Windows XP or
higher.

Expected Observation: The application should install with no errors. The
application will start as expected; browsing through any menus will happen with no
errors. At shut down, the used memory will be freed, no processes will be left hanging.

Case 2: Adding athletes.

Testers Instructions: The tester will choose a number of athletes to track, then
input the athlete information or open an athlete file from the GUI.

Conditions: Indoors or outdoors; need to use a computer running Windows XP or
higher.

Expected Observation: The tester should be able to open athlete files or input the
athlete information from keyboard, as desired. The athlete information will be available
to the Gumstix after all athletes are added.

Case 3: Detecting AP’s

Testers Instructions: The tester will choose an athlete, then press the “Detect”
button to detect surrounding AP’s.

Conditions: Indoors or outdoors; need to use a computer running Windows XP or
higher.

Expected Observation: The surrounding AP’s will be detected. This information
will then be displayed by the GUI.

Case 4: Using the GUI to track a moving person for a given period of time.

Testers Instructions: The tester will choose an athlete from a given list then will
start tracking by pressing a button on the GUI.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 60 -

Conditions: Indoors or outdoors, both with direct line of sight.

Expected Observation: The GUI will graphically display the position of the
moving person for a given period of time, within the error given by Case 6 of the
Algorithm test.

4.6. Algorithm Tests
The following tests are developed to test the validity of the implemented algorithms.

Case 1: One dimensional distance verses power measurement.

Testers Instructions: The tester will measure the Wi-Fi power at various distances
for a set number of samples. Do this for each AP.

Conditions: Indoors or outdoors, both with direct line of sight.

Expected Observation: This measurement will give the error distribution on the
expected distance calculated from the RSS.

Case 2: Localization using just RSS

Testers Instructions: The tester will measure the Wi-Fi power from all APs at
various locations around the playing field with a set number of samples. Compare the
actual location with estimated location from the propagation model developed in case 1.

Conditions: Indoors or outdoors, both with direct line of sight.

Expected Observation: This measurement will give the approximate location of
the DT. The calculated location is expected to be within the predicted error calculated
from the error in case 1.

Case 3: Using probability filters to locate static positions.

Testers Instructions: The tester will measure the Wi-Fi power from all APs at
various locations around the playing field with a set number of samples. This case the
localization algorithm will use a probability filter to enhance the process. Compare the
actual location with estimated.

Conditions: Indoors or outdoors, both with direct line of sight.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 61 -

Expected Observation: The calculated location is expected to have smaller error
than Case 2.

Case 4: Using dead reckoning to locate a moving person.

Testers Instructions: The tester will measure the accelerometer output from all
Axis’s walking and running at various speeds on a known path with a known starting
spot.

Conditions: Indoors or outdoors, both with direct line of sight.

Expected Observation: The dead reckoning algorithm should be able to track the
location of the person with the DT for a finite length of time before the error becomes
too large.

Case 5: Using a combination of dead reckoning and RSS measurements to locate a

moving person.

Testers Instructions: The tester will measure the accelerometer output and Wi-Fi
power while walking and running at various speeds on a known path with a known
starting spot.

Conditions: Indoors or outdoors, both with direct line of sight.

Expected Observation: The dead reckoning algorithm plus propagation model
should be able to track the location of the person. The error should be within the lower
range of error given by Case 4 and 2.

Case 6: Using a combination of dead reckoning and RSS measurements and

probability filters to locate the moving Athlete.

Testers Instructions: The tester will measure the accelerometer output and Wi-Fi
power while walking and running at various speeds on a known path with a known
starting spot. The Tester will implement the probability filter.

Conditions: Indoors or outdoors, both with direct line of sight.

Expected Observation: The error when using this algorithm should have the least
error of all the test cases.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 62 -

5. Conclusion

The design specifications provided within this document will meet the functional
requirements for the proof-of-concept device described in [1]. Also, through careful
design, the specifications will also meet some of the requirements for the final product.
Ideally many of the design solutions presented in this paper will be able to be used in the
design specifications for a final product. To ensure that the required functional
requirements will be met, a carefully thought out test plan has been devised for the
PosiTrack team to carry out. Slight deviations from the specifications and test plan are
expected but any major changes will require a revision to this document in order to
reflect the changes.

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 63 -

6. References

[1] A. Hrehorciuc, J. Anderson, J. Valdes, R. Lynne, “Functional Specifications for a

System to Track Athlete Performance”, ENSC 440 Capstone Project, Simon
Fraser University, Feb 2010.

[2] Mobile Whack Webpage – Laptop image source, Jan 18th 2010,
http://www.mobilewhack.com/images/toshiba_satellite_a105_s4284_laptop.jpg

[3] J.M. Lee, “Indoor Localization Scheme of a Mobile Robot Using RFID”,
Presented at the 2005 International Symposium on Humanized Systems, Wuhan,
China, 2005.

[4] C.-H. Lim et al., “A Real-Time Indoor WiFi Localization System Utilizing Smart

Antennas”, IEEE Transactions on Consumer Electronics, vol. 53, No. 2, May
1997.

[5] M. Ocaña, L.M. Bergasa and M.A. Sotelo, “Robust Navigation Indoor using WiFi

Localization”, Universidad de Alcalá, Madrid, Spain.

[6] V. Olivera, J. Cañas Plaza and O. Serrano, “WiFi localization methods for

autonomous robots” in Robotica, vol. 24. UK: Cambridge University Press, 2006,
pp. 455-461.

[7] Ladd A. M., Bekris K. E., Marceau G., Kavraki L.E., Wallach D. S., “Robotics-

Based Location Sensing using Wireless Ethernet”, MOBICOM.02, September
23.26, 2002, Atlanta, Georgia, USA.

[8] Senix Webpage – Acoustic transducer supplier, Jan 21st 2010,
http://www.senix.com/products.htm

[9] Guoqiang M., Fidan B. “Localization Algorithms and Strategies for Wireless

Sensor Networks”, Information Science Reference, 2009, Hershey PA. USA.

[10] Dippold M. “Personal Dead Reckoning with Accelerometers” IFAWC2006
March 15-16, Mobile Research Center, TZI Universität Bremen, Germany.

[11] Gumstix Website – Original Overo Fire COM Picture, Mar 9th 2010,
http://www.gumstix.com/store/catalog/images/view-O-FA-front.jpg

[12] Gumstix Website – Power Consumption, Mar 9th 2010,
www.gumstix.net/Hardware/view/Benchmarks-power-temperatures/Power-
Overo/112.html

[13] Wi2Wi W2CBW003 Specifications/Data Sheet, Mar 9th 2010,
http://www.wi2wi.com/products/datasheets/W2CBW003_PB%20rev1.2.pdf

System to Track Athlete Performance

Copyright © 2010, PosiTrack Systems - 64 -

[14] VX Sport – Product Costs, Mar 9th 2010,
http://www.vxsport.com/content/vx-log™-–-hardware

[15] Gumstix Website – Original Tobi Expansion Board Picture, Mar 9th 2010,
http://www.gumstix.com/store/catalog/images/view-Tobi-front.jpg

[16] Gumstix Website – Tobi Expansion Board Schematics, Mar 9th 2010,
http://pubs.gumstix.com/boards/TOBI/PCB30002-R2549/

[17] Gumstix Website – 40-pin Expansion Header, Pin Description, Mar 9th 2010,
http://www.gumstix.net/Hardware/view/I/O-connectors-cabling/

[18] Sparkfun Website – IMU Original Picture, Mar 9th 2010,
http://static.sparkfun.com/images/products/09431-01.jpg

[19] Analog Devices, “ADXL335 Datasheet Rev. 0”, 2009,
http://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf

[20] ST, “LY530ALH – Yaw Rate Gyroscope”, Rev 2, July 2009,
http://www.sparkfun.com/datasheets/Sensors/IMU/LY530ALH.pdf

[21] ST, “LPR530AL – Dual Axis Pitch And Roll Gyroscope”, Rev 2, July 2009,
http://www.sparkfun.com/datasheets/Sensors/IMU/lpr530al.pdf

[22] Sparkfun Website - 3.7V 1000mAh Original Picture, Mar 9th 2010,
http://static.sparkfun.com/images/products/00339-01-L.jpg

[23] Sparkfun Website – Maxim1555 Charge Board Original Picture, Mar 9th 2010,
http://static.sparkfun.com/images/products/00726-2.jpg

[24] Sparkfun Website – 6-DOF IMU Schematic, Mar 9th 2010,
http://www.sparkfun.com/datasheets/Sensors/IMU/6DOF-Razor-v11.pdf

[25] Sparkfun Website – Li-Ion Battery Charger Schematic, Mar 9th 2010,
http://www.sparkfun.com/datasheets/Batteries/LiPo-USB-Charger-v13.pdf

[26] Gumstix Website – Overo Signal Description, Mar 9th 2010,
http://www.gumstix.net/images//gumstix%20overo%20signals%20v1.0.pdf

