

Asana

Sam Leung Wil Gomez Sasan Naderi Gurpal Sandhu mingl@sfu.ca wgomez@sfu.ca sna14@sfu.ca gss7@sfu.ca April 15th, 2010

Presentation Outline

- Purpose
- Individual Roles
- System Overview
- High Level System Design
- Business Approach
- Timeline and Budget
- Individual Achievements
- Conclusions and Future Work
- Sources of Information and Acknowledgements

Purpose and Benefits

• The Wireless Weight Distribution Scale is designed to log the progress of an individual's weight while monitoring weight distribution in a standing position.

Beneficial in monitoring

- Stroke patient recovery
- Scoliosis
- Short leg syndrome
- Muscular atrophy
- o General posture
- o Overall weight

Roles in Project

Sam Leung – Chief Executive Officer

- Project manager
- PC application development

• Wil Gomez – Chief Technical Officer

- Microcontroller application development and testing
- LCD implementation

Sasan Naderi – Chief Financial Officer

- Allocated funds
- o Component research and hardware design

• Gurpal Sandhu – Chief Operations Officer

- Wireless communications
- Hardware design and testing

High Level System Design

Differential Pressure Sensors

- Determines pressure applied across liquid or gas
- Measure weight by taking the difference between two pressures applied to unit
- Accurate but temperature dependent and difficult to integrate

Linear Variable Differential Transformer Sensors (LVDT)

- Electrical transformers used to measure linear displacement
- Displacement determined by movement of armature – magnetic coil in-between primary and secondary transformer
- High precision and accuracy but only suitable for lower mass measurements

Load Cell Sensors

Measures changes in electrical resistance when external force is applied.

A load cell consists of a wheatstone bridge and a strain gauge sensor.

Our implementation requires four load cells – located in each corner of the scale.

Sufficiently accurate and reasonably priced.

Business Approach

Competition

- Nothing exactly
- Withings Internet connected body scale
- Nintendo Wii Balance Board
- Professional force platforms
 - Measures ground reaction forces generated by a body standing or moving on it

Marketing

- Health-conscious individuals
- Constant access to technology
- Professional use
 - × Physiotherapists
 - × Kinesiology research
- Personal use

Business Approach (cont'd)

• Cost

• Prototype cost: \$549.55

100 Units		10,000 Units
\$101.76	\$82.24	\$72.11

Component	Quantity
RF radio transceiver	2
Load cell	4
Relay	2
Microcontroller	1
USB Microcontroller	1
Graphic Serial LCD	1
Variable Voltage Regulator	1
Operational Amplifier	4
5V Voltage Regulator	1

• Financing

- Funding from venture capitalist company
- Private investors
- Relevant companies interested in our product

Project Timeline

	Task Name	Start	Finish	Predecessors		February 2010	March 2010	April 2010 21 24 27 30 02 05 08 11 14 17 20 2
1	Project Duration	Mon 04/01/10	Thu 22/04/10			120 23 01 04 07 10 13 10 13	22 23 20 03 00 03 12 13 10 2	
2	Reasearch	Mon 04/01/10	Tue 09/02/10					
3	Project Proposal	Mon 11/01/10	Mon 18/01/10					
4	Functional Specification	Fri 29/01/10	Mon 08/02/10		100 000			
5	Order Parts	Mon 01/02/10	Mon 05/04/10			-		
6	Test Parts	Mon 08/02/10	Wed 17/02/10					
7	Oral Status Report	Fri 12/02/10	Thu 18/02/10					
8	Build Sub Components	Mon 08/02/10	Mon 01/03/10					
9	Design Specification	Mon 22/02/10	Thu 11/03/10					
10	Integrate Sub Components	Thu 25/02/10	Mon 22/03/10					4
11	Written Status Report	Wed 17/03/10	Mon 22/03/10					-
12	Test Protoype	Fri 19/03/10	Wed 14/04/10					-
13	Post Mortem Report	Thu 15/04/10	Thu 22/04/10					
14	Project Presentatiion	Sat 10/04/10	Thu 15/04/10					

- Revised Gantt chart
- Project schedule maintained

Project Budget

Item Name	Description	Quantity	Total Cost (\$CAD)
Anyload ES300 Digital Scale	Digital Scale consisting of 4 load cells and aluminum housing	1	115.50
Arduino Duemilanove	Development board with Atmel ATmega328P	2	67.92
Toshiba LCD	LCD with serial backpack	1	76.62
Xbee Wireless Module	Zigbee 802.15.4 with wire antenna	2	46.21
Arduino Xbee Shield	Expansion board for Xbee module on Arduino development board	1	27.33
Maxstream Board	Zigbee development board (used)	1	40.00
Atmel RZUSBSTICK	USB powered Zigbee transceiver	1	47.50
Shipping	All shipping charges on ordered components	5	55.21
Miscellaneous	Small items	n/a	56.55
	549.55		
	425.00		
	124.55		

Individual Achievements

• Sam Leung

- Project management
- Development in C#

• Wil Gomez

- Embedded software development
- Testing and troubleshooting

• Sasan Naderi

- Reliability hardware design
- Research and development

• Gurpal Sandhu

- Wireless communications
- Testing and troubleshooting

Conclusions and Future Work

- Encase everything into the scale chassis
- Use a more compact receiver on the PC side
- Create a website so the data can be accessed remotely
- Refine power consumption
- Show more data on the LCD
 Weight distribution percentage
- Percent body fat measurement
- Real-time data measurement and transmission

Information Sources/Acknowledgements

Edwin Leung – Anyload

o Customer Service Manager

• Mehrdad Rastan – SFU Physics

o Teaching Assistant, Network Administrator

- Dr. Ash Parameswaran SFU Engineering
 o Professor
- Tony Leyland SFU Kinesiology
 Senior Lecturer
- ESSEF for project funding

Hardware Implementation

Instrumentation Amplifier

- Buffered differential amplifier
- Attached to each load cell
- Provides total voltage gain of 201

Hardware Implementation (cont'd)

Variable Voltage Regulator

- Regulates 9V to 6V to power LCD
- Controlled by digital pin of microcontroller through optical relay

LCD Implementation

• 160x128 Serial Graphic LCD

- Connected to MCU via Digital pins
- Custom font was created to show weight value
- Power was controlled via Relay connected to MCU
- Baud rate of 115200 was used

Wireless Implementation

• Xbee 802.15.4 Transmitter/Receiver:

- Low-cost and low-power RF modules that operates within the ISM
 2.4 GHz frequency
- UART interface for serial communication

• XBee Setup:

- Unique address pairing
 - × PAN ID
 - × Source ID
 - × Destination ID
 - × Channel ID

Parameter	Value
Indoor/Urban	Up to 100' (30 m)
Outdoor line-of-sight	Up to 300' (100 m)
Transmit Power	1 mW (0 dBm)
Receiver Sensitivity	-92 dBm
TX Current	45 mA @ 3.3 V
RX Current	50 mA @ 3.3 V

Wireless Implementation (cont'd)

• Transmitter Protocol:

- o Arduino serial API to establish communication and send data
- Transmits a finished packet after transmitting data

• Receiver Protocol:

- C# serial API to establish communication and receive data
- Receives and verifies the finished packet
- Received data captured on the serial port is written to a text file for post analysis

Weight Calculations

Load cell characterization

- Created a table of ADC values corresponding to a known weight
- Plotted the data to obtain the line of best fit
- Obtain the line equation to gather a ADC to weight relationship

Weight distribution

- Weight distribution is measured by keeping individual load cell measurement values
- Weight from each corner's load cell is totaled in the MCU to produce the total weight

GUI Implementation

• Developed using C#

o Microsoft Visual Studios 2008

- Weight distribution graph done using ZedGraph
 - × Free charting class library
- Editable fields for name and comment only

Microsoft Access Database

• Used to store and organize all data entries

• Code was frequently backed up using Perforce

