F.A.M.

Simon Fraser University School of Engineering Science ENSC 305/440- Capstone Project

Group Members:
Behdad Jamshidi
Eric Swanlund
Ted Lee
Zack Frehlick
Nastaran Naghshineh

April 10, 2012

- Team Members
- Motivation
- Business Case

Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
- Questions

Team Members

- Motivation
- Business Considerations

Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
- Questions

Individual Roles

Behdad Jamshidi, Team Leader

- > Hardware and software of central box
- > Implementing text messaging
- ➤ Programming LCD
- Ordering and delivering parts
- > Schedule meetings & keeping team on track

Ted Lee

- ➤ Hardware and software of central box
- > Implementing text messaging
- ➤ Programming LCD
- > Ordering and deciding on the parts

Individual Roles Cont'd

Zack Frehlick

- > Developing fall algorithm
- ➤ Hardware and software of portable accelerometer device
- > RF communication between devices
- > Ordering and deciding on the parts

* Eric Swanlund

- > Hardware and software of portable accelerometer device
- > RF communication between devices
- Developing fall algorithm
- Ordering and deciding on the parts

Nastaran Naghshineh

- Helping both sub-groups
- > Ordering and deciding on the parts
- Funding

- Team Members
- Motivation
- Business Considerations

Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
- Questions

Motivation

- ➤ More than one-third of adults 65 and older fall each year.
- The risk of falling and fall-related problems rises with age.
- ➤ Over 19700 elderly adults died from falling in 2008.
- ➤ People are more likely to return to independent living after a fall if help comes quickly

- Team Members
- Motivation
- **Business Considerations**
 - Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
- Questions

Competition

Life Alert

Philips Lifeline with AutoAlert

Brickhouse Alert Fall Detector

Market Potential

- In 2000, total medical expenses for fall injuries were \$19.3 billion dollars.
- Walgreen's Ready Response system generated 9.5 million in second quarter revenue in 2008.

Difficulties in Industry

- Many elderly feel stigmatized by wearing monitoring devices.
- Families want security, but elderly folk want independence.

What is the solution?

- Team Members
- Motivation
- Business Considerations

Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
- Questions

System Overview

Portable Device

- Detects a proper fall
- Sends a signal to the central device

System Overview

Central Device

- Receives signals from portable device
- Sends text messages
- Displays which portable device has sent a signal on LCD

- Team Members
- Motivation
- Business Considerations

Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
- Questions

Portable Device Hardware

- * eZ430-RF2500 Development Kit
 - Contains MSP430F2274 microcontroller and CC2500 2.4 GHz wireless transceiver

Portable Device Hardware

* ADXL335 Accelerometer: 3g (not adequate)

* MMA7361 Accelerometer: 6g (adequate)

Portable Device Hardware

- Team Members
- Motivation
- Business Considerations

Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
 - Questions

Fall Detection Software

Fall Detection Software

Final Fall Algorithm:

Step 1)
$$Magnitude = \sqrt{Acc_X^2 + Acc_Y^2 + Acc_Z^2}$$

> Step 2) Acceleration Peak:

> Step 3) Compare orientation 1 second before and 1 second after peak

Fall Detection Software

- ► Test Cases:
 - Common Types of Falls (trips, slips, etc.)
 - Loss and Recovery of Balance (near falls)
 - Activities of Daily Living (ADLs)

Fall Type - Trip

Near-Fall - Trip

ADL - Walking

ADL - Pick Up Off Ground

- Team Members
- Motivation
- Business Considerations

Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
- Questions

Central Device Hardware

- * Arduino Mega 2560
 - Easy to work with microcontroller with fast learning curve
 - Controls the texting and display modules of the central device
 - ➤ Powered by 5V and 3A regulator

Central Device Hardware

- * GSM shield Module
 - ➤ Has the ability to do everything a cell phone can
 - Controlled by AT-commands

Central Device Hardware

- * LCD Display (model TM162ADA7-2)
 - ➤ Displays the state of the portable device
 - ➤ Controlled by Arduino

Central Device Software

Arduino Software (C++)

Texting

 Receives a radio frequency signal from Portable device wirelessly and triggers the GSM shield module to send text messages to loved ones.

LCD

 When a radio frequency signal is received from the Portable device, it shows which device has fallen and displays the device name on the screen.

- Team Members
- Motivation
- Business Considerations

Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
- Questions

Timeline: Expected

Timeline: Actual

Budget: Expected

Component	Price
LED light	\$ 10
Accelerometer	\$ 150
Wireless Transmitter Receiver	\$ 300
Microcontroller	\$ 50
Other Costs	\$ 100

TOTAL: \$ 610

Budget: Actual

Component	Price
Development Boards & kits	\$ 151.65
Triple Axis Accelerometer	\$ 39.04
GSM Shield	\$ 126.70
Cellular Shield (Arduino Board)	\$ 117.91
Material for outside box	\$ 35.12
Other costs	\$ 115.09
Unused components	\$149.87
Broken Components	\$ 151.65

TOTAL: \$886.98

- ▶ The project has been divided into sub-groups.
- Helped each other when problems occurred.
- Every one did the best to bring the project to success.

- Team Members
- Motivation
- Business Considerations

Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
- Questions

What We Learned - Central

- How to work with Arduino board, GSM shield module, and LCD
- Soldering skills and techniques
- Teamwork and organization
- Creating and sticking to timelines and weekly goals

What We Learned - Portable

- Working with microcontrollers, RF communication, accelerometers, and debugger
- There will always be unforeseen problems
- Be persistent and creative in addressing problems
- Attention to detail

Future Developments

- Add keyboard for entering phone numbers and clearing the display
- Implement portable device on a single chip
- Create smaller and more attractive device case
- ▶ Improve RF communication system

- Team Members
- Motivation
- Business Considerations

Competition

Market Potential & Difficulties

- System Overview
- System Design

Portable Device Hardware

Fall Detection Software

Central Device Hardware & Software

Project Details

Timeline

Budget

- Conclusion & Summary
- Acknowledgments and References
- Questions

Portable Device Problem

- We have experienced significant problems with development kit, having to buy 2 replacement kits.
- CC2500 transceiver module becomes unresponsive and fails to initialize or communicate. All three kits we purchased eventually failed in the same way.
- In our demo, we can show the two system parts working independently, and we have implemented a short-term RF communication solution.
- We also have video footage of our device functioning properly, prior to development kit failure.

Acknowledgments

Thanks to:

- Dr. Stephen Robinovitch and graduate student Omar Aziz for guidance in fall testing and allowing us to borrow their data
- ENSC 305/440 Instructors and TAs:
 Dr. Andrew Rawicz, Steve Whitmore, Lukas-Karim Mehri, Shaghayegh Hosseinpour, Ali Ostadfar
- Engineering Science Student Endowment Fund (ESSEF) for funding the project

References

- 1. Onemedplace, [Online], Available: http://www.onemedplace.com/blog/archives/851. [April 7, 2012].
- 2. Wallgreens ready Response, [Online], Available: http://www.walgreensreadyresponse.com/index.php. [April 7, 2012].
- 3. Life Alert, [Online], Available: http://www.lifealert.net/products/equipment.html. [April 7, 2012].
- 4. Power Point Background, [Online], Available: http://www.pptbackgrounds.net/question-mark-backgrounds.html. [April 8, 2012]
- 5. Fenwick Motors, , [Online], Available:
 http://fenwickmotors.com/dealership/meet-our-special-team/.

 [April 9, 2012]

Questions

Project Demonstrations