

The AutoTab

The ScribeWare Team

Mike Tyson: Chief Executive Officer

Henry Huang: Chief Technical Officer

Patrick Wong: Chief Financial Officer

Shu Hui Wong: Chief Operating Officer

Team Dynamics

- Well defined roles and responsibilities
 - Mike and Patrick: Software implementation and testing
 - Henry: Hardware implementation and testing
 - Shu Hui: Documentation
- Everyone helped with other areas when needed

Outline

- Introduction
- System Overview
- Market Analysis
- Budget and Timeline
- Hardware
- Musical Theory
- Software
- Future Development
- Lessons Learnt
- Conclusion
- Acknowledgements

Introduction

- The AutoTab simplifies the music creation process
- All-in-one device that is not just a music transcriber, but also a metronome and a recorder.
- Easy to use and hassle-free

System Overview

Market Analysis

Target Markets:

- Musicians
 - Simplifies music creation process
- Education
 - Can be used as a tool to teach music theory
- Anyone and everyone!

Market Analysis

Current Products:

- Tuner/Metronome
- Record/Playback Device
- WAV to MIDI Convertor Software
- MIDI to Written Staff Software
- Each task can be done separately but there is no all-in-one device on the market that performs all of the above

Market Analysis

Proposed Solution: The AutoTab

- Simple: easy for general public to use
- Inexpensive: affordable for most people
- Portable: can be used in any environment or situation
- All-Inclusive: packages the tools needed by musicians into one device

Budget

Equipment List	Estimated Unit Cost	Actual Unit Cost Sponsored		
Altera Cyclone II – DE2 University Dev Board (Terasic)	\$269 – educational pricing			
LCD Display	\$50			
Buttons and Caps	\$12	\$10		
Switch	\$2	\$2		
Batteries (5)	\$10			
microSD Card Socket	\$4	-		
16GB microSD	\$30	Borrowed 2GB		
Microphone	\$5			
Speakers	\$5			
LED	\$5			
Audio Jack	\$2			
Casing	\$30			
Total Cost	\$424	\$12		

Timeline

ID	Task Name	Start	Finish	Jan 2012	Feb 2012	Mar 2012	Apr 2012
1	Project Proposal	1/6/2012	1/16/2012				
2	ESSEF Proposal	1/9/2012	1/11/2012				
3	Research	1/6/2012	2/16/2012				
4	Research (Actual)	1/6/2012	2/23/2012				
5	Functional Specification	1/9/2012	2/6/2012				
6	Oral Progress Report	1/9/2012	2/13/2012				
7	Design Specification	2/6/2012	3/5/2012				
8	Coding/Testing	2/6/2012	4/2/2012				
9	Coding/Testing (Actual)	2/6/2012	4/27/2012				
10	Written Progress Report	2/20/2012	3/19/2012				
11	Integration/Debugging	3/6/2012	4/2/2012				
12	Integration/Debugging (Actual)	3/15/2012	4/27/2012				

Cyclone IV and the DE2-115

- Terasic donated a DE2-115 development board
- Includes:
 - Cyclone IV E
 - Wolfson Audio Codec with Line-in/out
 - SD Card Port
 - Push Buttons
 - LCD 16x2 Module
 - 7-Segment Display
 - 17 Red and 8 Green LEDs
 - 128 MB SDRAM, 1 MB SRAM
- Project utilizes:
 - 18,676 / 114,480 (16 %) Logic Elements
 - 1,556,080 / 3,981,312 (39 %) Memory Bits
 - 99 / 532 (19 %) Embedded Multipliers

High Level System Design

Nios II Soft Processor

- Altera's soft processor core
- Implemented on the FPGA
- Nios II/f variant
- Instantiated floating point unit
- System clocked at 125MHz
- IOs clocked at 40MHz
- Audio core clocked at 18.42MHz

Fast Fourier Transform Core

- Part of Altera's Megacore IP library
- Implemented on the FPGA
 - Designed hardware wrapper to facilitate communication with CPU
- 16 bit data input, 32 bit output
 - Fixed point
- FFT length is 8192
 - With our down sampling algorithm: ~0.5Hz/bin
- Performance:
 - Load + Process + Unload = 3*8192 cycles = 24576 cycles

Musical Theory

Monophonic Describes music consisting of single notes or a single

melodic line

Polyphonic Describes music with multiple melodic lines or multiple

notes played simultaneously such as chords

Note Musical notation indicating a particular pitch to be held

for an amount of time

Fundamental The lowest frequency signal present in a given

musical note

Harmonic Any whole number multiple of the fundamental

frequency present in a note

Algorithm Overview

- Quantization
- Peak Extraction
- Fitness Evaluator
- Scaling Factor (worst fitness)
- Mutation Function
- Note Extraction
- MIDI Generator

Quantization

- Quantization
- Peak Extraction
- Fitness Evaluator
- Scaling Factor (worst fitness)
- Mutation Function
- Note Extraction
- MIDI Generator

- Quantization
- Peak Extraction
- Fitness Evaluator
- Scaling Factor (worst fitness)
- Mutation Function
- Note Extraction
- MIDI Generator

Fitness Function

$$Fitness = 1 - \frac{\sum_{t=0}^{tmax} \sum_{f=fmin}^{fmax} (O(t,f) - X(t,f))^{2}}{\sigma}$$

- Quantization
- Peak Extraction
- Fitness Evaluator
- Scaling Factor (worst fitness)
- Mutation Function
- Note Extraction
- MIDI Generator

- Quantization
- Peak Extraction
- Fitness Evaluator
- Scaling Factor (worst fitness)
- Mutation Function
- Note Extraction
- MIDI Generator

- Quantization
- Peak Extraction
- Fitness Evaluator
- Scaling Factor (worst fitness)
- Mutation Function
- Note Extraction
- MIDI Generator

- Quantization
- Peak Extraction
- Fitness Evaluator
- Scaling Factor (worst fitness)
- Mutation Function
- Note Extraction
- MIDI Generator

Lessons Learnt

- Research must be done thoroughly
- Ask for help and advice when you need it
- Perfection is inefficient
- Communication is critical

Future Development

- Portability
 - Implement device on an ASIC
 - Battery usage in place of a power supply
- Algorithm Refinement
 - Allow for multi-instrument transcriptions
 - Tuner implementation
 - Chord recognition
- User Interface
 - Implement menu options

Conclusion

- ScibeWare's AutoTab prototype successfully created
 - Has future potential (low cost + high effectiveness)
 - Fills a niche in the market
- Valuable experiences
 - Technical
 - Soft skills

Acknowledgements

- Dr. Andrew Rawicz
- Steve Whitmore
- Ali Ostadfar, Lukas-Karim Merhi and Shaghayegh Hosseinpour
- Lakshman One
- Terasic

