Multifunction Intelligent Headphone System

ENSC 305/440 Final Project Presentation
Simon Fraser University

Presented by:
Leo Jiang
Simranjit Sidhu
Afrin Chowdhury
XiaoPeng He
Frank Zhu
Agenda

- Introduction
- System Overview
- Hardware
- Software
- Business & Marketing
- Project Specific
- Conclusion
- Future Work
- Question
INTRODUCTION

- Sound Tech Inc.
- Team Members
- Motivation
- Sound Tech Solution
Introduction

Sound Tech Inc.
- work on products related to music and sound
- products are based on market research and analysis

Team Members
- 5 senior engineering students with varying backgrounds in software, hardware, mechanical systems, and project management

Leo Jiang – CEO, System Major
Simranjit Sidu – CTO, Biomedical Major
Ray He – COO, Electronics Major
Afrin Chowdhury – CFO, Electronics Major
Frank Zhu – CIO, System Major
The New Trend
- Enjoy music where ever they go
- Long lives music!

Safety is a Concern!
- You are blinded by the headphone
- What is around you?

Pardon Me!
- Screammmm!!!
- Couldn’t hear ya!
Motivation

Pedestrians (that's pedestrians with iPods) trigger rise in road accidents by failing to hear cars

By RAY MASSEY

Last updated at 1:59 AM on 8th October 2008

Beware. There is a new danger on the streets. And you might not spot it until it's too late.

Pedestrians with iPod or MP3 music player headphones glued to their ears have a habit of stepping out into busy roads oblivious to the traffic.

Accidents involving ‘pedestrians’, as they have been called, now account for nearly one in ten minor accidents involving sudden braking and shunts, according to figures from an insurance company.

Well over half of the culprits are described as young people, teenagers or children.

In many accounts of minor accidents on insurance claim forms, we have seen a significant increase in drivers citing such individuals as having been a factor in the incident,” a spokesman for the company said.

The most common scenario involves a ‘pedestrian’ stepping into the road without looking properly and failing to hear an oncoming vehicle.

This can force the approaching driver to brake suddenly, subsequently being hit by the car behind.

Headphone-Wearing Pedestrians Causing More Traffic Accidents

by Lee Bains on October 9, 2008 at 07:06 AM

An unnamed insurance company recently stated that one in ten minor accidents are caused by headphone-wearing pedestrians, the Daily Mail reports.

Since headphones and earbuds have become louder and increasingly capable of blocking out external noise (especially those new-fangled in-ear buds), the folks who don them on the streets are frequently unable to hear traffic noise. This can result in a listener stepping into a crosswalk, oblivious to the oncoming truck forced to slam on its brakes. Not surprisingly, collisions are on the rise.

Although we haven't heard any such reports yet, we're confident that sometime soon, some iPod-listening jaywalker is going to be taken to the bank. [From: Daily Mail]
Solution

Provide you great music quality!

Controls your headphone with your voice command!

Warns you there is danger around you!

Warns you if there Fire Engine is nearby!

Cancels out unwanted ambient noises!

Notify you when someone is calling your name or talking to you!
Word Recognition
- Detects keywords and perform actions
- “VOUME UP”, “VOLUME DOWN”, “MUTE VOLUME”, “MAX VOLUME”

Sound Recognition
- Warn the user when danger is lurking
- “AMBLUANCE”, “POLICE”, “FIRE ENGINE”

Voice Recognition
- Inform the user who is calling their name
System Overview

- System Block Diagram
- High Level Hardware
- Prototype Design
System Block Diagram

(Input)

Voice Recognition Module (EasyVR)
- Filtering
- A/D Converter

Microcontroller (Arduino Nano)
- ALU
- Counter

Volume Controller (DS 1869)

Noise Cancelling Headphone

Output

Audio In

User Interface
- Input Buttons

(High Level Block Diagram of MIHS)
High Level Hardware shows the interaction of the different components used for MIHS.

Easy VR → Arduino Nano → DS1869 → Monster® Headphones

(High Level Hardware)
The prototype design shows the placement of the hardware and user interactive features for MIHS
Hardware

- Arduino Nano
- EasyVR
- Headphones
- DS 1869
Arduino Nano

- Arduino Nano is a small, complete, and breadboard-friendly microcontroller board based on the ATmega328.

Why Arduino Nano?
- Checks the mode of operation
- Main part of arithmetic operations
- Controls the digital potentiometer
- Flash memory 32KB
- Cheap Price and smallest size
EasyVR

EasyVR is a multi-purpose speech recognition module designed to add versatile, robust and cost effective speech and voice recognition capabilities.

Why EasyVR?
- Captures sounds, performs noise filtering
- Convert the analog signal to digital signal
- Communicate with Arduino Nano
- Simple graphical user interface
- Appropriate size
- Excellent Price
Headphones

Why normal headphone in prototype?
- Cheap price
- Easy to perform adjustment and lower risk to take
- Feedback from the market survey show that most people do not want to spend more than $100 on a headphone

Why noise cancelling headphone in proposal?
- Great quality of audio output
- Avoid the interfere from external noise
- High powered digital amplifier for decreasing distortion
The DS1869 is a digital rheostat or potentiometer, this device provides 64 possible uniform tap points over the entire resistive range.

Why DS1869?
- Read pulse signal from Arduino Nano and adjust the resistance of potentiometer
- Controls the volume of headphone
- Replaces mechanical variable resistors
- Integrated digital circuit and higher precision
- Save space, reduces heat
Software

- Software Design
- Arduino Software
- EasyVR Commander
Software Design

There are two software modules for MIHS

For Developer:
The central software, it is the control software of MIHS.

For Users:
for the user is for training words, sounds, or voice for MHIS.
Arduino Software

Arduino software
- Central control
- Sets up communication channels

Setup()
- Bridge mode communication channel
- Pulse mode communication channel
- Serial mode communication channel

Loop()
- Continuous check status of EasyVR
- Control Volume
EasyVR Commander

- EasyVR commander
- Front End
- Train new commands
User Interface

Hardware Interface: hardware interface includes any component of the MIHS where they come in contact with the user
- Power switch
- Reset switch

Voice Interface: voice interface does not have physical contact with the user, it only requires sound
- Commands

Visual Interface: visual interface does not have physical contact with the user, it’s main purpose indicate to the user the different modes
- Red & Green LEDs
Business & Marketing

- Market Research
- Headphone Price Analysis
- MIHS Cost
- Unit Cost vs. Mass Production
- MIHS Survey
According to The NPD Group

- the Sales of headphones over $100 are growing
- Headphones cost $100 or more went from around 2 percent of the headphone market in 2009 to 3.5 percent of the market in 2010
- Average consumers buy a new pair of headphones every 14 months, but teenagers buying new ones even more frequently

<table>
<thead>
<tr>
<th>Features</th>
<th>Premium ($100+) Headphone Purchasers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand</td>
<td>84%</td>
</tr>
<tr>
<td>Sound quality</td>
<td>76%</td>
</tr>
<tr>
<td>Noise cancelling</td>
<td>47%</td>
</tr>
<tr>
<td>Length of cord</td>
<td>27%</td>
</tr>
<tr>
<td>Water/sweat resistant</td>
<td>22%</td>
</tr>
<tr>
<td>Playback/volume controls</td>
<td>21%</td>
</tr>
<tr>
<td>Cordless</td>
<td>15%</td>
</tr>
<tr>
<td>Microphone</td>
<td>10%</td>
</tr>
<tr>
<td>Color</td>
<td>8%</td>
</tr>
</tbody>
</table>
Noise Cancelling Headphone Price Analysis

<table>
<thead>
<tr>
<th>Noise Cancelling Headphone</th>
<th>Price</th>
<th>Comfort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able Planet Clear Harmony</td>
<td>$350</td>
<td>Good</td>
</tr>
<tr>
<td>Audio-Techanical ATH-ANC7</td>
<td>$220</td>
<td>Excellent</td>
</tr>
<tr>
<td>Bose Quiet Comfort 2</td>
<td>$299</td>
<td>Excellent</td>
</tr>
<tr>
<td>Bose Quiet Comfort 3</td>
<td>$349</td>
<td>Excellent</td>
</tr>
<tr>
<td>Jabra C820s</td>
<td>$199</td>
<td>Good</td>
</tr>
<tr>
<td>Logitech NCH</td>
<td>$150</td>
<td>Excellent</td>
</tr>
<tr>
<td>Outside The Box Solitude</td>
<td>$250</td>
<td>Fair</td>
</tr>
<tr>
<td>Panasonic RP-HC500</td>
<td>$200</td>
<td>Good</td>
</tr>
<tr>
<td>Sennheiser PXC 450</td>
<td>$450</td>
<td>Good</td>
</tr>
<tr>
<td>Stage</td>
<td>Cost</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Projected Cost (includes NCH)</td>
<td>$650</td>
<td></td>
</tr>
<tr>
<td>Actual Cost (without NC)</td>
<td>$572</td>
<td></td>
</tr>
<tr>
<td>Actual Prototype Cost (1unit) (without NC)</td>
<td>$232</td>
<td></td>
</tr>
</tbody>
</table>

For the prototype cost, noise cancelling headphone is not included
Product Unit Cost vs. Mass Production

<table>
<thead>
<tr>
<th>Component</th>
<th>MIHS Unit</th>
<th>MIHS Mass Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Retail Price</td>
</tr>
<tr>
<td>Micro-controller</td>
<td>$50</td>
<td>$15</td>
</tr>
<tr>
<td>Voice Recognition Module</td>
<td>$50</td>
<td>$15</td>
</tr>
<tr>
<td>Noise Cancelling Headphone</td>
<td>$150</td>
<td>$50</td>
</tr>
<tr>
<td>Debugging Chip</td>
<td>$15</td>
<td>$2</td>
</tr>
<tr>
<td>Miscellaneous Electrical Components</td>
<td>$20</td>
<td>$2</td>
</tr>
<tr>
<td>Power Supply and Batteries</td>
<td>$5</td>
<td>$1</td>
</tr>
<tr>
<td>Total Product Cost</td>
<td>$290</td>
<td>$85</td>
</tr>
<tr>
<td>Labour (1 Junior engineer)</td>
<td>$875*</td>
<td>$50**</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$1,165</td>
<td>$1,700</td>
</tr>
</tbody>
</table>

One Junior Engineer:

* Labour for an unit: 35 hours/week X $25/Hour = $875
** Labour for Mass Production: 2 hours/week X $25/Hour = $50
MIHS Survey

- **Purpose:** to understand what consumer wants and how much they are willing to spend for a Headphone?
- **Number of people participated in this survey:** ~ 50

Bar Chart 1:
- **Fashionable:** 26
- **Features:** 18
- **Price:** 10

Bar Chart 2:
- **Voice Control:** 27
- **Noise Cancelling:** 1
- **AM/FM Tuning:** 6

Bar Chart 3:
- **Under $100:** 26
- **$100 - $200:** 11
- **$200 - $300:** 6
- **Over $300:** 1

Features:
- Voice Control
- Noise Cancelling
- AM/FM Tuning
- Comfort
- Fashionable

Price:
- Under $100
- $100 - $200
- $200 - $300
- Over $300
Project Specific

- Budget
- Safety & Sustainability
- Documentation Timeline
- Development Timeline
- Lesson Learned
Budget

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>PROPOSED PRICE</th>
<th>ACTUAL PRICE</th>
<th>DEVIATION</th>
<th>PROTOTYPE</th>
<th>MODULE</th>
<th>TESTING / EXTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-controller</td>
<td>$150</td>
<td>$97</td>
<td>$53</td>
<td>$49</td>
<td>$48</td>
<td>$1</td>
</tr>
<tr>
<td>Voice Recognition Module</td>
<td>$150</td>
<td>$218</td>
<td>-$68</td>
<td>$49</td>
<td>$67</td>
<td>$102</td>
</tr>
<tr>
<td>Headphone</td>
<td>$150</td>
<td>$100</td>
<td>$50</td>
<td>$100</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Debugging Chip</td>
<td>$100</td>
<td>$103</td>
<td>-$3</td>
<td>$13</td>
<td>$14</td>
<td>$77</td>
</tr>
<tr>
<td>Miscellaneous Electrical</td>
<td>$50</td>
<td>$51</td>
<td>-$1</td>
<td>$19</td>
<td>$15</td>
<td>$19</td>
</tr>
<tr>
<td>Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply and Batteries</td>
<td>$50</td>
<td>$3</td>
<td>$47</td>
<td>$3</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total</td>
<td>$650</td>
<td>$572</td>
<td>$78</td>
<td>$233</td>
<td>$144</td>
<td>$199</td>
</tr>
</tbody>
</table>

We received **$500** fund from ESSEF for MIHS
Safety & Sustainability

Safety
- All electrical components enclosed inside the MIHS
- Electrical components should not cause any harmful interference

Sustainability
- Use of recycled materials
 - Computer parts (jumpers, sockets, connectors, LED and switches)
 - Audio Jacks
 - Reused Electronic components
Timeline for the Documentation

<table>
<thead>
<tr>
<th>Summary of Task</th>
<th>Spring 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JANUARY</td>
</tr>
<tr>
<td>DOCUMENTATION AND DELIVERABLES</td>
<td></td>
</tr>
<tr>
<td>ESSEF Funding Presentation</td>
<td>11/01/12</td>
</tr>
<tr>
<td>Project Proposal</td>
<td>16/01/12</td>
</tr>
<tr>
<td>Functional Specification</td>
<td>16/01/12</td>
</tr>
<tr>
<td>Oral Progress Report</td>
<td>06/02/12</td>
</tr>
<tr>
<td>Design Specification</td>
<td></td>
</tr>
<tr>
<td>Written Progress Report</td>
<td></td>
</tr>
<tr>
<td>Presentation and Demonstration</td>
<td></td>
</tr>
<tr>
<td>Post-Mortem</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Blue** Actual Timeline
- **Red** Estimated Timeline
Timeline for Designing & Development

<table>
<thead>
<tr>
<th>Summary of Task</th>
<th>Spring 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JANUARY</td>
</tr>
<tr>
<td>COMPONENT SELECTION</td>
<td></td>
</tr>
<tr>
<td>Component Research</td>
<td></td>
</tr>
<tr>
<td>Finalize Part Selection and Order Parts</td>
<td>13/03/12</td>
</tr>
<tr>
<td>Component Testing</td>
<td>25/02/12</td>
</tr>
<tr>
<td>PROJECT DESIGN</td>
<td></td>
</tr>
<tr>
<td>System Design</td>
<td></td>
</tr>
<tr>
<td>Hardware Design</td>
<td></td>
</tr>
<tr>
<td>Software Design</td>
<td>07/03/12</td>
</tr>
<tr>
<td>PROTOTYPE CONSTRUCTION AND TESTING</td>
<td></td>
</tr>
<tr>
<td>Proto-Headphone Construction</td>
<td></td>
</tr>
<tr>
<td>Software Testing</td>
<td>31/03/12</td>
</tr>
<tr>
<td>INTEGRATION AND COMPLETION</td>
<td></td>
</tr>
<tr>
<td>PCB and Hardware Integration</td>
<td></td>
</tr>
<tr>
<td>Software Calibration</td>
<td></td>
</tr>
<tr>
<td>Project Completion</td>
<td>05/04/12</td>
</tr>
</tbody>
</table>
Lessons Learned

Team Dynamics
- Scheduling conflict need to be resolved
- Well defined roles and responsibilities are important
- Efficient teamwork is critical
- Communication is crucial

Project Development
- Order parts early, purchase in bulk and extra
- Create test plan, run tests that are likely to create errors first
- Test individual parts before putting all together
- Test entire system integration first, even if subsystems are not in their final versions.
Prototype built on time and within the specified budget
Future works needed to make it more robust
Fully functioning prototype has designed and built
- Word Recognition Mode
- Sound Recognition Mode
- Voice Recognition Mode
Future works needed to make it more robust
Great experience for all team members!
Conclusion
Future Work

Hardware

- Microphones – noise cancelling
- Audio Amplification - match all headphones
- Digital Potentiometer - more precise control
- Power Supply – rechargeable, power indicator

Software

- Combine software, train commands using Arduino
- Voice Independent Commands
Thank You! =]