

The Indoor Direction Finder for the Visually Impaired

Development team

- Wilson Chen Chief Executive Officer (CEO)
 - High-level software & UI development
- Alan Fang Chief Financial Officer (CFO)
 - Hardware development
- Phillip Peach Chief Operating Officer (COO)
 - Hardware and Software interface development
- Shaham Shafiei Vice President of Marketing (VPM)
 - Mechanical Design

Outline

- Introduction And Motivation
- System Overview
- System Specifications
- Business And Marketing
- Time And Budget
- Project Timeline
- What We Learned
- Future Work
- Conclusion
- Acknowledgments
- Questions?

Introduction and Motivation

Envied Solutions proposes erecting a system that will help visually impaired people navigate through buildings without another person's assistance. Therefore **WhereTo** system would provide the visually impaired user a greater degree

of freedom and would drastically improve their standard of living enable them to live a more independent and happy life.

System Specifications

- Transmitter/Receiver
 - Raspberry Pi
 - Arduino
 - VCO
 - Filter
 - Battery
 - Regulator

- User Interface
 - Voice recognition by the synergy of Voxforge, Hidden Markov Model Toolkit (HTK), and Julius
 - Trilateration positioning
 - A-star path-finding
 - Audio feedback

Hardware

Software

System Overview

BFSK Transmitter (complete)

Transmits data usingBinary Frequency Key Shifting

- Controlled by a Raspberry Pi
- Frequency is varied using a Voltage Controlled Oscillator
- Output frequency is transmitted ultrasonically
- As built the data rate was very low: 71 bits/second

BFSK Reciever (complete)

- Receives the transmitted ultrasonic signal and passes it through a bandpass amplifier
- Amplified signal is sampled by an Arduino
- Raspberry Pi uses those samples to calculate the determine the frequency and decode the data

Range Calculator (not-implemented)

 Would have used time-of-flight calculation between time transmitted and time received

Low data rate and time resolution made this too inaccurate to use

Trilateration: (complete)

- Use digitized signal strengths to determine user position on a room-map
- Makes use of overlapping circles/spheres to narrow down the precise position
- In contrast with the popular triangulation, no angles are measured

A-star / A* search: (complete)

- Popular amongst AI and game programmers
- Determines the quickest (least-expensive) path by taking the most direct route and fan out on obstacle collision or forks
- Keeps track of path cost in each iterative step of the search to select an optimal path after arriving at the destination

Voxforge, HTK, Julius (accuracy problems)

- Voxforge allows creating an acoustic model to statistically associate words with sounds
- Hidden Markov Model Toolkit (HTK) quantizes sound samples and matches them to the elementary sounds of words (phonemes)
- Julius is the brain that does the dictionary lookup and determines grammatical correctness

Raspberry Pi / USB soundcard (unused in current prototype)

- The built-in sound producing chip is so poor of quality that it is disabled by default
- The use of a USB sound card helps but that also introduces the requirement of external power for it

UI State Tree

Business and Marketing

- Visual Impairment
 - Number of affected people will double up over the next 20 years!!
- Market alternatives
 - GPS
 - Indoor-enhanced A-GPS

Business and Marketing

Component	Budget
Wi-Fi Receiver	\$30
Wi-Fi Transceiver	\$40 x 4
Audio	\$50
Battery (rechargeable)	\$20
Microcontroller	\$50
Sensor	\$40
Handle	\$40
Magnetometer/Accelerometers	\$30
PCB Board	\$50 x 4
20% Contingencies	\$120
Total	\$740

Component	Actual Expense
4 *Raspberry Pi	\$156.8
3 * Arduino	\$94.91
Battery (inc. charger)	\$36.9
Ultrasonic Transducer	\$28.83
IC Chips	\$60.12
Wifi adapter	\$14.55
Miscellaneous	\$366.66
Total	\$758.77

Projected Budget

Actual Expenditures

Project Timeline

Planned Schedule Actual Schedule

What We Learned

- Path Finding Algorithm
- Voice recognition
- Data Transmission
- Analog to Digital, Digital to Analog
- Frequency modulation (FSK)
- Team Work

Future Work

- Needs a design overhaul to strip excesses & optimize
- Include RF processing for long range signal transmission

Conclusion

- Overambitious project
- Schedule slippage countermeasures of simply dedicating more time did not magically solve problems
- Unforeseen difficulties in hardwaresoftware signal transfer broke project into two distinct pieces

Acknowledgements

- Dr. Andrew Rawicz
- Mr. Steve Whitmore
- Mr. Lukas-Karim Merhi
- Mr. Ali Ostadfar
- Mr. Lakshman One
- Professor Rodney Vaughan

Questions?

