Project Team

- Jorden Bryer – CEO
- Chaman Toor – CTO
- Willy Wong – CFO
- Clark Zhao – COO
Outline

- Background
- High Level Design
- Main Components
- Functional Spec Deviations
- Final Schedule
- Total Costs
- Demo
- Individual Responsibilities
- Questions
Background

- Waking up in the morning can be one of the most difficult parts of the daily routine
- Natural light can help you wake up in the morning
- Manually closing the blinds every night can be a hassle for large buildings
- Design an automated blind system to solve these issues
Current Solutions

1.) **Electric Curtain Tracks - HT100 [1]**
 - Requires a custom track to be installed
 - Can be used with a remote control

2.) **Dawn to Dusk electric curtain [2]**
 - Needs a Glider Track for the curtains
 - Weight limitations on curtains
 - Needs to plugged into a wall socket
Current Solutions

Glider Track – View: Looking Up
Our Solution

• Integration of manual and automated system
 – Enabled by alarm utilizing a real time clock
 – Detects sunlight and inside light conditions
 – Sensors monitor light levels and control blinds according to a user's settings
 – Compact design that fits securely in regular blind housings
Project Objectives

• Motorized blind lifting and tilting mechanisms to control the light entering a room
• Ambient light sensing, allowing our microcontroller to obtain real time data on light conditions
• Software interface to allow the user to program a number of settings
• Aesthetically pleasing design with cords, motors, and other electrical components hidden
Main Components

1.) Arduino Mega Microcontroller
2.) LCD Panel User Interface
3.) Blind Tilt Mechanism
4.) Blind Lift Mechanism
5.) Photo Resistor
6.) BH1750 Light Sensor
7.) Software
Arduino Microcontroller

- Heart of the device
- Powers all components
- I2C used for light sensor and real time clock
User Interface

• The LCD panel allows user interaction
• Push buttons
 • Set Alarm
 • Set Clock
 • Set Light settings
 • Reset the device
Blind Tilt Mechanism

- Serves to Tilt the blinds
- Triggered by either the Light Sensor or Photo resistor
- Consists of:
 - Servo Motor
 - Tilt Rod
Blind Lift Mechanism

• Serves to Lift the blinds
• Triggered by either the Light Sensor or Photo resistor
• Consists of:
 – DC Motor
 – String Spool
 – L298 Motor Controller
Photo Resistor

- Serves to detect either day or night
- Triggered by absence or presence of Sunlight
- Connected in a voltage divider configuration
- The output of this component is a voltage level which corresponds different LUX
BH1750 Light Sensor

- Serves to detect accurate light levels inside the room
- Adjusts the tilt on the blinds to optimize light in room
- Interfaced using I2C bus
Software

Menu → Tilt Blinds
 ↓
Lift/Lower Blinds
 ↓
Set Time
 ↓
 ↓
Set Open Time → Time 00:00 PM
 ↓
Set Close Time → Time 00:00 PM
 ↓
Disable
 ↓
Set Light
 ↓
 ↓
Set Open Light → Lumens 0000
 ↓
Set Close Light
 ↓
Set Optimal Light
 ↓
Disable
 ↓
Set Clock
 ↓
 ↓
Time 00:00 PM
Functional Spec Deviations

- There is no solar charging component
 - Charge time for battery is very long
 - Solar array supplies very little current
 - Tried Lead Acid and NiMH batteries
 - Rechargeable batteries that fit our requirements are very large and heavy

- No audio alarm
 - Decided wasn’t completely necessary to our design
Final Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>1</td>
<td></td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Order Parts</td>
<td></td>
<td>9</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>L298 Motor Controller</td>
<td>16</td>
<td>23</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bidirectional DC Motor</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo Motor</td>
<td>16</td>
<td>23</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>I2C Digital Light Sensor</td>
<td>23</td>
<td></td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Grove Real Time Clock</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD and Button Shield</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Array and Battery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly of Modules</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration/Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Total Costs

- Total Fund granted from ESSS: $500
- Total expenditure till now: $403
- Remaining Fund: $97

Expenditure details:
- 1 Inch Light filtering Blinds and Frame: $36
- Arduino Mega 2560: $70
- LCD button Shield Kit for Arduino: $26
- Ardumoto – Motor Driver Shield: $30
- Grove RTC: $12
- Light Sensor and Photoresistor: $10
- Servo: $15
- Motors (Step and Bi-Directional): $32
- Medium Duty Solar Panel: $17
- Batteries, Clips and cables: $45
- Speaker, Glue Stick, Prototype Board, and Bobbin: $24
- Housing raw materials, shrink wrap, cable: $25
- Solder equipment, flux, soldering wick: $25
Future Improvements

• Reducing cost replacing our microcontroller
• Add production level features defined in functional specification
• Improvements to the lift mechanism reliability, and overall design
• Implementing the solar charging circuit
• Add audible morning alarm feature
Conclusion

• The project was complex enough that it could be completed in 3 months
• Everyone’s schedule was accommodating which really helped
• It helped having that contingency fund just incase anything went wrong
• Only minor deviations to our functional specification were required to fit the project into the allowable timeline
Individual Responsibilities

- Jorden
- Chaman
- Willy
- Clark
Acknowledgement

• Bonnie Gray - 3D printer
• Lucky One
• Mike Sjoerdsma
• Lukas-Karim Merhi
• Reza (350 TA)
• 440/305 TA’s
Reference

Questions