

Presents

SkySeed

Members of Panalloon Systems

Sarah Elmasry (COO)

Software Engineer

- Wi-Fi client/server Development
- GUI Design/Development

Shayan Azizbeaigi (CFO)

Test Engineer

- Aerial Netting and Links
- Logistics

Members of Panalloon Systems

Michael Nguyen (CDO)

Power Electronics Engineer

- Power Distribution /Safety Design
- Electronic Enclosure Design

Milad Bonakdar (CTO)

Software Engineer

- Wi-Fi client/server Development
- GUI Design/Development

Members of Panalloon Systems

Amir Shamsuddin (CEO)

Embedded System Developer

- Sensor/Actuator Implementation
- SkySeed System Integration

Presentation Outline

- Motivation/Introduction
- System Overview
 - Aerial System
 - IP Camera
 - Motion System
 - SkySeed Software
 - Wireless Network
 - Power System
- Project Planning
- Materials & Cost
- Future of SkySeed
 - Product Improvement and Business
- Conclusion

Motivation

Tradition
Surveillance
Have a
Limited
Vantage Point

Outdoor Static Surveillance For remote Areas

Law
Enforcement,
Research,
Journalism, Oil
Industry,
Agriculture

SkySeed

Motivation

Introducing SkySeed

Proposed solution:

Surveillance system for monitoring large/remote areas

System Characteristics:

- Height provided by a helium balloon
- 360° camera rotation for a Panoramic View
- Real-time wireless video stream and control

System Overview

Five Sub-Systems:

- Aerial System
 - Balloon Netting Enclosure connection
- Surveillance IP Camera
- Motion System
 - Servo Bracket
- Wireless/Software
 - User Interface Arduino Program Network
- Power System
 - Safety Distribution Consumption

SkySeed Block Diagram

Aerial System: Balloon

Why Helium balloon?

O Why not hot-air balloon?

High risk & cost, Excessive training required

o Why not a drone?

Pilotless, Longer flight time

Why not Hydrogen

Explosive, lift required

Aerial System: Balloon

Helium weather balloon:

- Chloroprene material
- o 2.46 m³ Maximum Helium volume
- Max lift of 2.3 kg
- Payload Weight of 1.1 kg
- Actual Lift of 1.78 kg

Aerial System: Balloon

Challenges with Helium balloon

- Expensive
 - \$150 per medium size canister
- O How much helium is enough?
 - No pressure gauge for inside balloon
- Not durable
 - Popped two balloons
 - Have to wear gloves

Aerial System: Netting

Purpose: Distributes system

weight to reduce stress points

Aerial System: Enclosure Links

Stabilize payload

- Keeps enclosure parallel to the ground
- Convenient to detach from balloon netting

Surveillance IP Camera

Specifications:

Picture Resolution	1280 x 720
Frame Rate	5 - 25 fps
Video Compression format	H.264
Wireless Standard	802.11 b/g/n RJ-45
Network Security	WEP/WPA/WPA2 encryption support
Network Protocol	HTTP FTP TCP/IP UDP SMTP DHCP PPPoE DDNS UPnP
Power Consumption	DC 12 V / 1 Watt
Night Vision	Yes

Weight reduction: 700 g → 250 g

Panalloon Systems, Design Specification for SkySeed, Simon Fraser University, Burnaby, BC,

Motion System

- Servo #1 Continuously rotate about x-axis
- Servo #2 Rotates about z-axis

Motion System: Servo Motor

3 Pin PWM Servo

Stall current of 1 A

At Current payload:

- Servo #1 (Yaw)
 - ~ 100 mA measured
- Servo #2 (Pitch)
 - ~ 100 mA measured

Motion System: Wooden Bracket

Motion System: Motion stabilizer

Torque applied by wind

Motion System: Motion stabilizer

Motion System: PID Stabilizer

SkySeed Software: Arduino Program

- Purpose: SkySeed Brain
- Acts as a Wi-Fi server accepting up to 4 incoming client connections from UI
- Receives user input through Wi-Fi shield
- Processes user input and controls servo motors accordingly

SkySeed Software: User Interface

Features:

- Control camera orientation
- Select from 3 speed options
- Stream video feed
- Record video stream
- Rotate image

SkySeed Software: User Interface

Developed using C# Windows Form application

 Video stream capability implemented using Aforge.NET library

UI serves as TCP socket client

Compatible with up to 4 UI sessions at once

Wireless Network

 Wi-Fi Shield and IP Camera are assigned fixed IP addresses

Server: Wi-Fi Shield

Client: Base Station / UI

Client/Server connection uses
 TCP sockets

Power System

On-board battery

- Ideally want power source on SkySeed
- Needs a battery technology with high power density (Ah/kg) e.g. Li-Ion
- Not cost effective

On-ground battery

- Lead-Acid Battery (12 V, 12 Ah)
- Safety features and Visual feedback
- Connectors for usability
- Enclosure to restrict access
- Disadvantage: requires 20 m of cable

Power System

Safety and power distribution circuitry

- Power ON LED
- Resettable fuse (1.3 A)
- Reservoir capacitor (2200 μF)
- Bulk voltage regulator (12 V to 5 V)

Power System

Estimated Power Consumption			
Device	Current (mA)	Voltage (V)	Power (W)
Microcontroller	200	5	1.0
Top Servo	100*	5	0.5
Side Servo	100*	5	0.5
IP Camera	83.3	12	1.0
Gyroscope	7	5	0.035
Total			4.035

Measured Power Consumption			
Device	Current (mA)	Voltage (V)	Power (W)
Battery Terminals	403	12	4.836

- Lead-acid battery (12 V, 12 Ah) provides 144 W
- SkySeed can operate for ~30 hours

System Overview

Five Sub-Systems:

- ✓ Aerial System
 - Balloon Netting Enclosure connection
- ✓ Surveillance IP Camera
- ✓ Motion System
 - Servo Bracket
- ✓ Wireless/Software
 - User Interface Arduino Program Network
- ✓ Power System
 - Safety Distribution Consumption

Project Plan

	Task Name ▼	Duratior ▼
1	Project Proposal	9 days
2	Research	57 days
3	Functional Specificatikons	20 days
4	Design Specification	15 days
5	Progress Report	2 days
6	Expected Aerial System Development	22 days
7	Actual Aerial System Development	41 days
8	Expected Motion System Development	6 days
9	Actual Motion System Development	42 days
10	Expected Client/Server Development	30 days
11	Actual Client/Server Development	50 days
12	Expected UI Development	30 days
13	Actual UI Devlopment	47 days
14	Expected Power System Development	18 days
15	Actual Power System Development	44 days
16	Actual Gyro Development	29 days
17	Expected System Testing/Integration	15 days
18	Actual System Testing/Integration	30 days

Item	Projected Cost (\$)	Actual Cost(\$)	Difference
WI-FI Camera	160.00	94.52	65.48
WI-FI Shield	35.00	99.95	(64.95)
Solar panel	90.00	-	90.00
Servo Motor	60.00	37.13	22.87
Arduino Uno	50.00	38.70	11.30
Weather Balloon	70.00	195.97	(125.97)
Helium Tank	150.00	324.00	(174.00)
Rechargeable Battery	40.00	45.00	(5.00)
Miscellaneous	100.00	179.04	(79.04)
Tarp		10.76	
Electronic bedding		18.00	
Wood for bracket		7.97	
Zap straps		8.00	
Circuit components		24.80	
Breadboard		10.00	
Power Regulator		11.50	
Import tax		79.96	
Parachute components		8.05	
Shipping Cost	120	62.50	57.50
Total	875.00	1076.81	(201.81)
Total + 10% Contingency	962.50	1076.81	(114.31)

Future of SkySeed

- Prototyping: Cost Per SkySeed
- Business Case
- Competition
- Market Delivery
- Product Improvement

Total Cost: \$344.57

Market Price : \$1000

Profit: \$309.5 per prototype

Item	Cost(\$)
Wi-Fi Camera	94.52
Circuit Module	46.99
Servo Motor	18.67
Arduino Uno	38.70
Weather Balloon	48.99
Rechargeable Battery	45.00
Circuit components	24.80
Power Regulator	11.50
Employee Royalty	360.00
Total Cost	690.50

Business case

- Target Market: North America
- 500 Unit in first year of launch
- 500 Units X \$1000 = \$500,000 first year's net revenue
- Of which \$154,750 profit
- %100 of profit is re-invested first 5 years of operation

Future of SkySeed: Competition

Company Name	Price (\$)	Balloon Volume (m³)	Main Market
Panalloon Systems	1000	~2.40	 Law Enforcement Agriculture Journalism & Film Research Oil Industry
Ariel Product Camera & SkyDoc Balloon	4600	~4.5	Law EnforcementMilitaryFilm
Lockeed Martin	6.9 M	~12000	Military/Government
ТСОМ	10.23 M	N/A	Military/Government

Panalloon Systems, Design Specification for SkySeed, Simon Fraser University, Burnaby, BC,

Future of SkySeed: Competition

Panalloon Systems vs. Aerial Products:

Specs	Aerial Products	Panalloon Systems	
Price	\$4600 (Camera not included)	\$2000	
Size ~ 2 kg lift	4.5 m ³	2.46 m ³	
Stability	High tech Wind Stabilizer	Gyroscope to Stabilize	
Material	Vinyl (More durable)	Chloroprene (Less durable)	

Future of SkySeed: Competition

- Develop a PID controller to stabilize and user control
- Add UI feature allowing only one user to control camera orientation at a time
- Auto rotate image
- Add system status: wind speed, temperature, battery life, helium level

Future of SkySeed: Market Delivery

Conclusion

- Many more enhancements anticipated for SkySeed, if time and money had permitted
- O We learnt about:
 - Communicating efficiently in a team
 - Writing technical documentation
 - Adhering to hard and soft deadlines
 - Developing a Windows Form application
 - Aerodynamics, Wi-Fi, power, wood-working, gyroscopes
- We are proud of our accomplishments and enjoyed the experience

Acknowledgments

- Dr. Andrew Rawicz and Mr. Steve Whitmore
- Jamal Bahari and respected TAs of ENSC 440
- Fred Heep
- Gary Houghton
- Lucky One
- Clark Hsieh
- Weighton Fund
- ESSEF Endowment
- Campus authority

Questions

Aux Slides

Aux Slides

- Provide rotational resolution
- And torque reduction

Aux Slides

	Task Name ▼	Duration ▼	Start *	Finish
1	Project Proposal	9 days	Wed 08/01/14	Mon 20/01/14
2	Research	57 days	Wed 04/12/13	Thu 20/02/14
3	Functional Specificatikons	20 days	Tue 21/01/14	Mon 17/02/14
4	Design Specification	15 days	Sat 22/02/14	Thu 13/03/14
5	Progress Report	2 days	Sat 22/03/14	Mon 24/03/14
6	Expected Aerial System Development	22 days	Tue 04/02/14	Wed 05/03/14
7	Actual Aerial System Development	41 days	Wed 05/02/14	Wed 02/04/14
8	Expected Motion System Development	6 days	Mon 17/02/14	Sun 23/02/14
9	Actual Motion System Development	42 days	Mon 17/02/14	Tue 15/04/14
10	Expected Client/Server Development	30 days	Mon 03/02/14	Fri 14/03/14
11	Actual Client/Server Development	50 days	Mon 03/02/14	Fri 11/04/14
12	Expected UI Development	30 days	Mon 03/02/14	Fri 14/03/14
13	Actual UI Devlopment	47 days	Wed 05/02/14	Thu 10/04/14
14	Expected Power System Development	18 days	Mon 10/02/14	Wed 05/03/14
15	Actual Power System Development	44 days	Thu 13/02/14	Tue 15/04/14
16	Actual Gyro Development	29 days	Wed 05/03/14	Mon 14/04/14
17	Expected System Testing/Integration	15 days	Wed 12/03/14	Tue 01/04/14
18	Actual System Testing/Integration	30 days	Wed 05/03/14	Tue 15/04/14

