

Presents the DualCooler

An Environmentally Friendly Refrigeration System

April/ 25/ 2014

Ranjita Ravi

Chief Executive Officer

Niroshan Gunasingam

Chief Technology Officer

Abantika Oishee

Chief Financial Officer

Hasan Syed

Chief Operations Officer

Allan Vincent

Chief Information Technology Officer

Uu

Introduction

- Motivation, Background, Solutions and System Overview

Business Overview

Market and Competition

Hardware

Components and Description

Software

- Algorithms and Arduino IDE

Project Logistics

- Budget and Timeline
- Challenges
- Conclusion
- Future Plans

lotivation

 Many of our parents store some refrigerator worthy items outside during the winter

So why not use the same cold air to cool the contents of a refrigerator?

Motivation

Background

- Our ideas and project specifications are derived off:
 - Geothermal energy heating/cooling systems
 - HVAC central air conditioning systems
 - Natural lighting light pipes

Clockwise from Top Right: Natural Lighting (Light Pipes) [1], HVAC Air conditioning[2], Geothermal Heating/Cooling [3]

Implementing a Solution

Solution 1:

- Cooling just the radiators behind the fridge
- Speeds up cooling the refrigerator
- Compressor stays on for shorter time
- Saves Power!

Solution 2:

- Route the cold air into the fridge and cool it directly
 - Compressor not in use at all as long as temperature outside is cold enough
- Saves More Power!

- Two modes:
 - Compressor Mode
 - External temperature ≥ User Set Temperature
 - RefriECD Mode
 - External temperature < User Set Temperature

RefriECD Mode

Microcontroller Detects temperature below user set temperature Signals relayed to switch off the compressor system

Signals received by the damper to open

Damper closes/ fan is switched off when the refrigerator reaches the required temperature

Exhaust fan switches on to take away the warmer air

Fan switched on to facilitate cold air circulation

Normal Average Energy Consumption: = 325 kWh/year

Energy Consumption with DualCooler: = 216.46 kWh/year

Savings

= 108.54 kWh/year ≈ \$12.85/year

*Based on Calgary temperature statistics for 1998 - 2012

Our Results

- Without our system, with just the compressor:
 - 66.4 kW∙h
- RefriECO Mode:
 - −0.25 kW•h

BUSINESS OVERVIEW

Marketing and Competition

- Generally, our targeted audience is people living in colder countries, i.e., North America, Russia
- Approximately 340 million people could be benefitted
- Let also include the fact that this can be used in industrial applications and apartment complexes

- Unit cost would significantly reduced when mass produced
- Cheaper sensors
- Drop in the cost for redundant components

Marketing

Unit Price (\$)	104.78
Expected Sale Price (\$)	150.00
Profit (\$)	45.22
Profit Margin (%)	43.2

Competition

- Sun Frost Refrigerators utilizes top mounted cooling system to reduce energy consumption
- Vestfrost Refrigerators saves energy by having built-in condenser and cooling tubes

HARDWARE

Components and Description

UD Screens and Buttons

- Creates a user interface that allows the user to:
 - Select temperature scale
 - Select the desired internal Fridge Temperature
- Quick Start Guide illustrates the steps briefly

- Two Ducts
 - Exhaust
 - Supply
 - Needed to be well insulated
- Contains the fan and connects to the damper

Dampers

- create a closed system when in compressor mode
- Dampers open when in the alternative mode
- Supply and Exhaust dampers
 - Controlled by servos mounted on the outside

- Two fans
 - Supply fan located on the outside of the building to pull in cold air
 - Exhaust fan located right above the fridge to pull out the warm exhaust air from the fridge

Temperature Sensors

- Two temperature sensors
 - One outside the building (External Temperature)
 - One inside the fridge (Internal Temperature)

SOFTWARE

Flowcharts and the Arduino IDE

Arduino IDE

- First time using it for a lot of us
- Most of the libraries were ready to use
- Tested one part at a time and integrated
- Adhered to the flowchart

PROJECT LOGISTICS

What we wanted and what really happened...

A

N

		Component Type	Actual Cost (\$)
Component Type	Expected		
	Cost (\$)	Mini Fridge	159.99
		Pipe Insulation	16.490
Mini Eridao	F0 00	2 "5 inch Dampers"	23.980
winn rhuge	50.00		
Analog Temperature	5.580	Waterproof Temperature Sensor	10.500
Sensor		Digital Temperature Sensor	6.300
		IC LM335Z Temperature Sensor	5.000
Arduíno Uno Microcontroller	20.88	LCD Shield 2 Pin	29.800
Servo Motor	10.00	Servo Motor	11.250
4 Inch Damner	20.00	2 Channel Relay Board	23.300
	20.00	2 "5 inch Duct Pipes"	12.760
5 inch Duct Pipe	30.00	2 "120mm PWM Fans"	27.980
Fans	30.00	48 QT Cooler	26.000
Elle	10.00	Copper clad Presensitized board	17.800
Filter	10.00	Positive Resist Developer	12.950
Miscellaneous Cost	50.00		
Total Expenditure	226.46	Energy Meter	20.000
	220.40	Miscellaneous Cost	65.000
		Total Expenditure	469.10

Timefine

32

Refri

- Broke a refrigerator and had to start over again
- Hardware issues:
 - Angular placement of Servos
 - Standalone powering methods for the circuit
 - Switching off the fan
 - Cutting through the fridge
- Trouble ordering parts
- Illnesses

Challenges

Conclusion

- Project looks much better than envisioned
 - Managed to add more features (ie. LCD Display and pushbuttons)
 - Implemented PCB for our circuit
- We're still friends ... I think 😳
- Over budget but we have learned our lessons
- Time management is a continuously evolving skill

Future Work

- Possibly add more sensors such as airflow sensors that would help monitor airflow
- System should be simplified/optimized
 - More compact PCB's
 - Reduce clock frequency to save power
- Make it wireless
- Implement system with freezers

Dr. Andrew Rawicz Steve Whitmore Dr. Ash Parameswaran Jamal Bahari Lukas-Karim Merhi Mona Rahbar Alireza Rahbar Fred Heep **Gary Houghton** Wael Jendli Ibrahim (Kofi) Appiah Riddhi Bhide **Sunny Bains Our Families**

Additional Information

Schematic

Schematic

References

 [1] "National Environment Agency," Government of Singapore, 3 June 2013.
[Online]. Available: http://app2.nea.gov.sg/grants-awards/energyefficiency/eenp-awards-2012/news-release. [Accessed 24 April 2014].

[2] "Singapore Government," Building and Construction Authority, 2010.[Online]. Available: https://www.bca.gov.sg/zeb/daylightsystems.html.[Accessed 17 April 2014].

[3] "Dan Vandervort's Home Tips," Dan Vandervort's Home Tips, 2014. [Online]. Available: http://www.hometips.com/how-it-works/forced-air-heatingsystems.html. [Accessed 17 April 2014]

[4] "How It Works: Geothermal Heat pumps," BGE Homes: A Constellation Company, 2014. [Online]. Available:

https://www.bgehome.com/geothermal_howitworks.php. [Accessed 17 April 2014].