

NOW I SEE A Travel Aid for the Visually Impaired

Anita Kadkhodayan Steven Lee Darya Namvar

Team Introduction Project Objective Project Design Project Progress ➢ Finance Conclusion > Future Work

Team Introduction

- Steven Lee (CEO)
 - Team Leader
 - Hardware development focus
- > Darya Namvar (VPE)
 - UI Circuit design and software focus
 - Financial manager
- > Anita Kadkhodayan (VPS)
 - Software development focus
 - Communication manager

Team Introduction Project Objective Project Design Project Progress ► Finance ► Conclusion ► Future Work

✓ Motivation

✓ NOW I SEE

Background and related work

Motivation

"There is no better way to thank God for your sight than by giving a helping hand to someone in the dark" -Helen Keller

More than a million Canadian living with blindness or significant lose of vision

> Our goal is to help visually impaired toward a more independent lifestyle

Team Introduction Project Objective Project Design Project Progress ► Finance ► Conclusion ► Future Work

✓Motivation

✓ Background and related work

✓NOW I SEE

Background and related work

- > White cane
- > Robotic cane
- Sonar glove
- Fongue display Unit

7

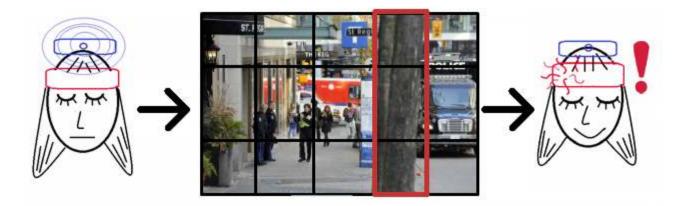
Background and related work

- Jacket and vest combination
 - Gerard Medioni, professor of computer science at the USC Viterbi School of Engineering
 - glasses observe the environment and the vest gives directions
 - It uses vibrating motors
 - Camera in glasses gives 3D images
 - Computer and battery in backpack
 - SW is complicated

Background and related work

Kinecthesia

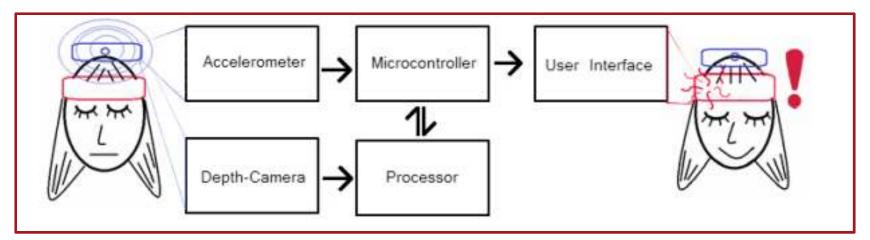
- Eric Berdinis and Jeff Kisk, at Weiss Tech House
- ≻Wearable belt
- Processor, Camera and Vibration Motors that detect objects in 3 directions

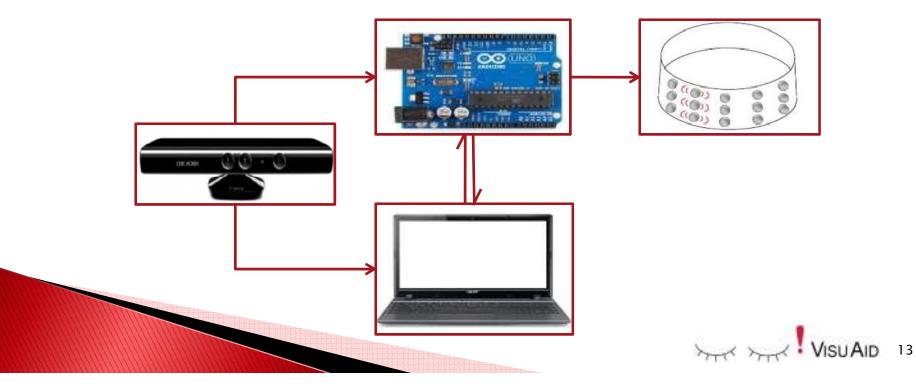


Team Introduction Project Objective Project Design Project Progress ► Finance ► Conclusion ► Future Work

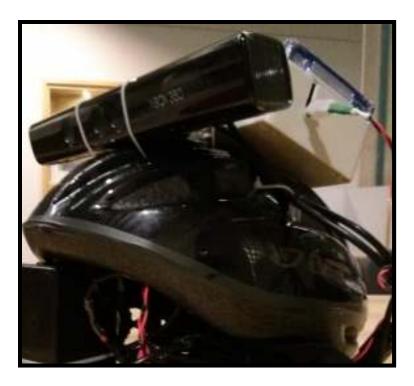

Motivation
 Background and related work
 NOW I SEE

- > Uses a depth camera to detect obstacles in front of the user
- Informs user of obstacle by vibratory stimulation interface placed on forehead




Team Introduction Project Objective Project Design Project Progress ► Finance ► Conclusion > Future Work

System Overview


Team Introduction Project Objective Project Design Project Progress ► Finance ► Conclusion ► Future Work

Hardware Design

- Depth Camera
- Accelerometer
- Central Processor
- Microcontroller
- > User Interface Module
- Power Supply Module
- Device Mount

Depth Camera

- Microsoft Kinect
 - Affordable
 - Easy to find
 - Large resources available
 - Familiar

- Alternative:
 - Asus Xtion Pro

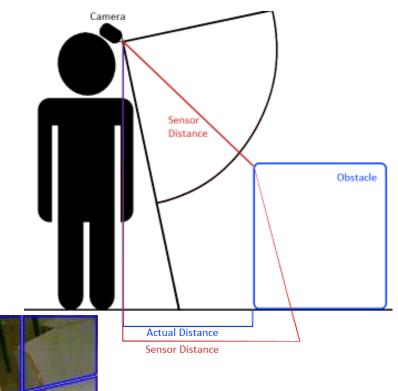
Depth Camera

Depth Camera Specifications

Specification	Capability
Frame Rate	30 frames per second (FPS)
Viewing Angle	43° vertical by 57° horizontal field of view
Output Range Dimensions	640 X 480 pixels
Depth Range	0.4 m ~ 4.0 m
Spatial Resolution	~1.8 mm (at 1.5 m from camera)
Depth Resolution	11 bits, >1 mm
Power Requirement	12V DC, 1.08A, 13W

Depth Camera – Mounting

Mounting of the depth camera

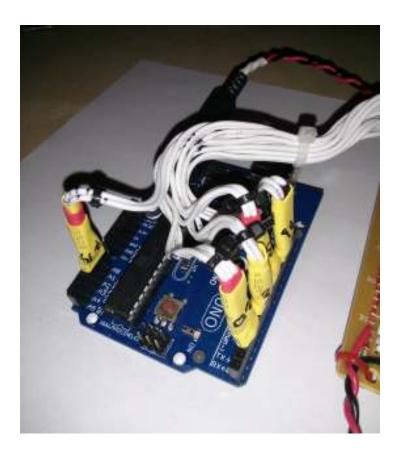


Accelerometer

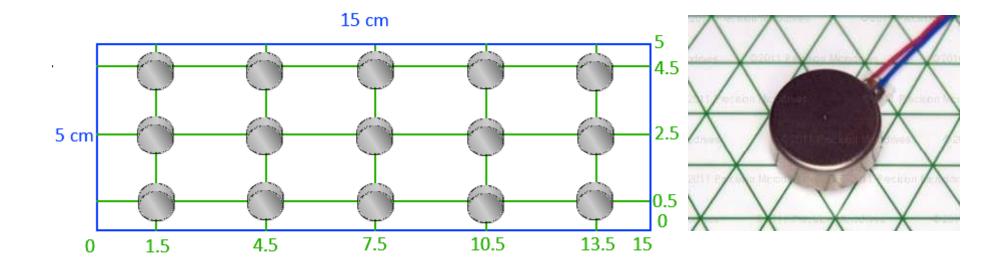
- Needed for:
 - Ground detection
 - Subsection Division
 - Scene Mapping


Central Processor

- Laptop
 - o Asus C710 Chromebook
 - Full x86 Architecture (needed for Kinect)
 - o Ubuntu Linux for ROS
 - o Runs on a separate battery


Microcontroller

> Arduino Uno


Microcontroller



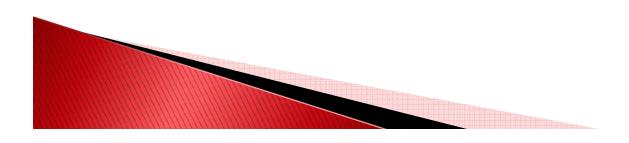
User Interface Design

User Interface Design

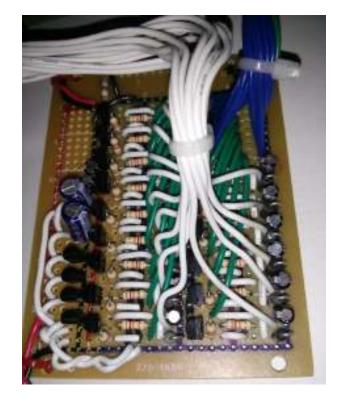
User Interface Design

Vibration Motors Specification

Specification	Value
Body Diameter	12 mm
Body Height	3.4 mm
Operating Voltage	3.0 V DC
Rated Operating Current	53 mA
Nominal Power Consumption	160 mW
Nominal Vibration Frequency	180 Hz
Typical Start Current	115 mA
Typical Rise Time	110 ms
Typical Stop Time	210 ms

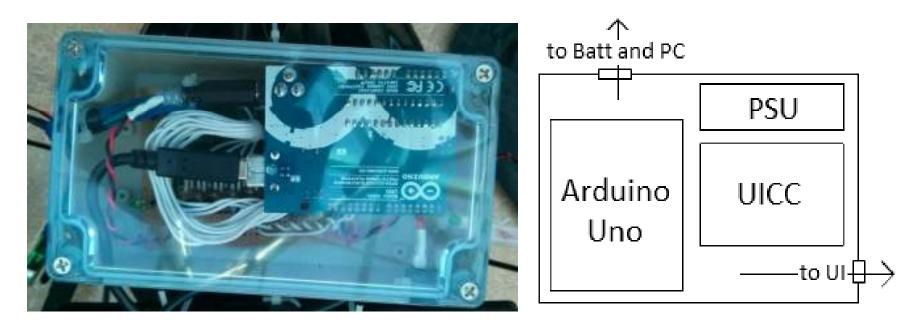


User Interface Controller Circuit

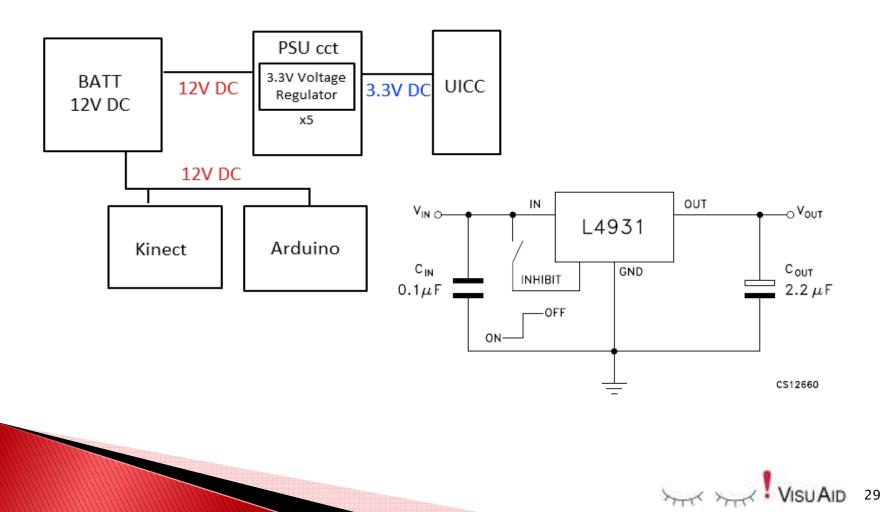

Circuit Design

		+
Component	Value	
C1	0.1 uF	
D1	1N4148	
Q1	2N2222	R2
Motor	312-101	ArduinoOut Q1
R1	3.9k	R1 >
R2	12k	

User Interface Controller Circuit



Enclosure

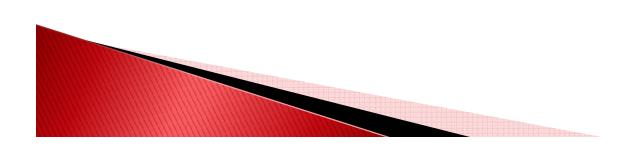

Enclosure – Arduino + User Interface Controller Circuit + Power supply Unit

> Overall Design

Battery specification

Characteristic	Specification
Output Voltage	12 V DC (nominal)
Current Capacity	1.3 Ah
Energy Capacity	15.6 Wh
Туре	Lead Acid(rechargeable)

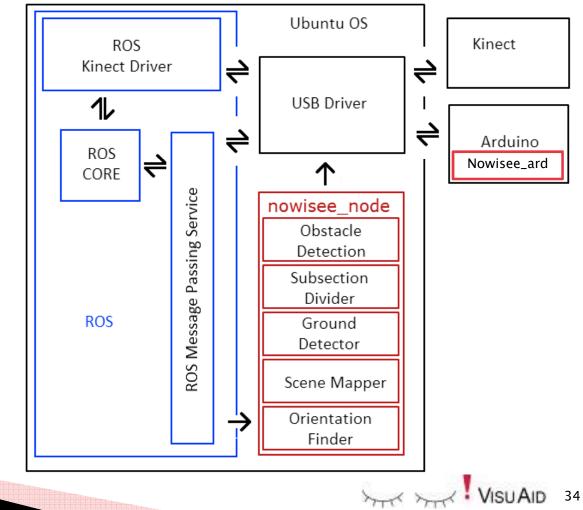
- > Lead Acid:
 - >Easy to find, affordable
 - Heavy and hazardous not for production



Power consumption summary

Component	Consumes
Kinect	13W (1.08A @ 12V DC)
Arduino	2W (400mA @ 5V DC)
Vibration Motor	2.6W (53mA @ 3.3V DC X 15)
Overhead	+ 15%
Total	20W

> 15.6 Wh / 20W ~= 45 Minutes


Team Introduction Project Objective Project Design Project Progress ► Finance ► Conclusion ► Future Work

Software Design

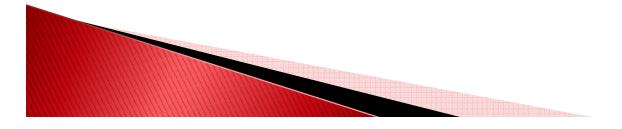
- Software Overview
 - >nowisee_node
 (C++, ROS)
 - >nowisee_ard
 (Arduino)

Operating System (OS)

- Linux based OS needed for ROS and easy programming
 - >Ubuntu Linux
 - officially supported for ROS
 - Previous experience

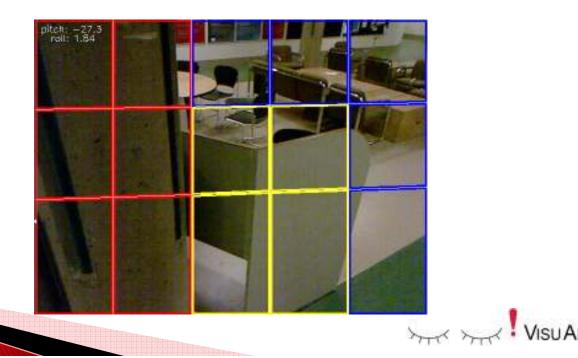
Alternative:
 Windows OS
 too "heavy"

Robot Operating System (ROS)


- Provides drivers for Kinect sensors
- Integrated with OpenCV for easy image processing handling
- Inter-node communication service
- > Kinect drivers: Freenect stack, Kinect_aux package

Robot Operating System (ROS)

Freenect Stack


- Includes open source library, driver, API for Kinect
- Fetches depth values from Kinect
- Publishes them in an array of values
- Kinect_aux Package
 - Accesses accelerometer of Kinect
 - Acceleration given in vector form

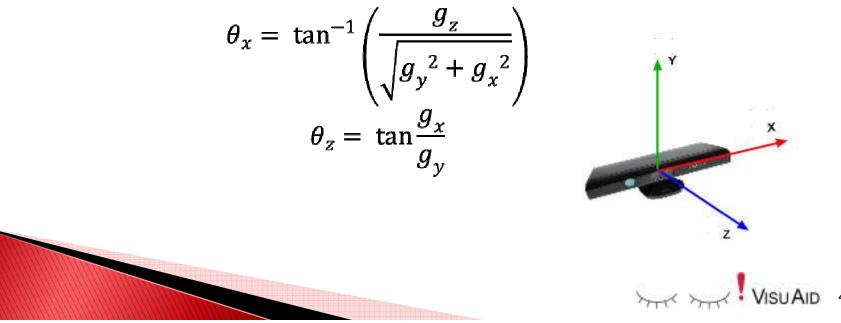
nowisee_node

- > Original C++ Program Written for NOW I SEE
- Input: raw data coming from Kinect camera
- > Output:
 - Corresponding command sent to Arduino
 - ✓ Visualisation

38

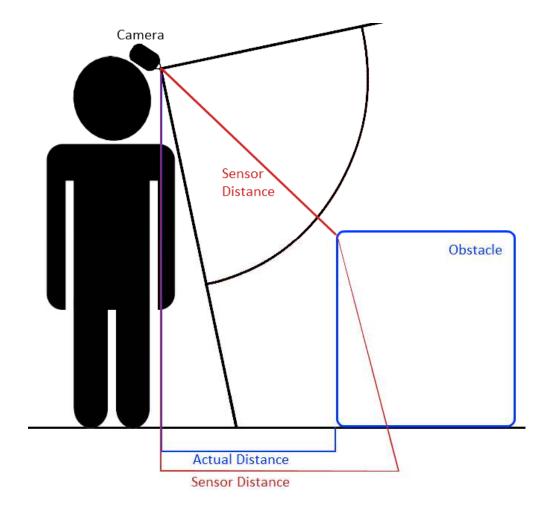
nowisee_node

- > Image/ data processing:
 - Orientation Finder
 - ✓Scene Mapping
 - Ground Detection
 - Subsection Division
 - Obstacle Detection



Camera Orientation Calculation

Information provided by the accelerometer is in the form of vector:

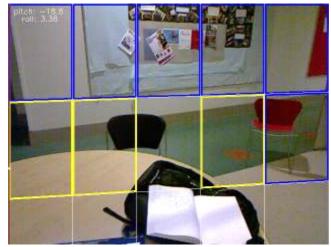

 (g_x, g_y, g_z)

> Roll(θ_z) and Pitch(θ_x) of camera is resolved

Scene Mapping

- Our camera is installed at an angle
- As a result, distance measured by camera is not always equal to actual distance from user

Ground Detection


- Estimate ground by camera's orientation information and known height of user
- > Ground detected at 3m from user
- Lowest row represents ground

Subsection Division

- > 15 subsections of vibration motors
- The division of the horizontal is uniform
- In vertical direction, bottom row is dedicated as ground, and rest is evenly divided

Ground is within FOV

Ground is outside FOV

Obstacle Detection

- > Two tier thresholds: at 1m and 2m
 - o Farther than 2m clear
 - Farther than 1m warn ("flashing")
 - Closer than 1m alert
- Depending on threshold reached, different commands are sent to UI

Nowisee_ard

Controls Motors

o Gets commands from nowisee_node

Processes commands and executes them

• Visualisation

8	0 / d	lev/ttyA	СМО		
					Send
2 0	1 0	1 0	2 0	0 0	
0 2 0	0 2 0	0 1 2	0 2 2	0 0 0	
0 2 0	0 2 0	0 1 0	0 1 2	0 0 0	
0 2 0	0 2 0	0 1 1	0 2 2	0 0 0	■
S 4	Autoscro	oll			No line ending 🔻 9600 baud 💌

Team Introduction Project Objective Project Design Project Progress ► Finance ► Conclusion ► Future Work

✓Workload Distribution
 ✓Challenges/ Changes
 ✓Schedule

Workload Distribution

Task	Anita	Daria	Steven
Hardware Design	Х	Х	XX
Hardware Modification			XX
PSU Design		Х	XX
PSU Implementation		Х	XX
Software Design	XX	Х	Х
HW-SW Communication	XX		Х
Image Processing	XX	Х	X
Software Implementation	XX	Х	Х
Linux/ROS	Х		XX
UI/UICC Design	Х	XX	
UI Implementation	Х	XX	Х
UICC Implementation	Х	Х	XX
Arduino Programming	Х	XX	
Parts Acquisition	Х	Х	Х
Administrative	Х	XX	
Documentation	Х	Х	Х

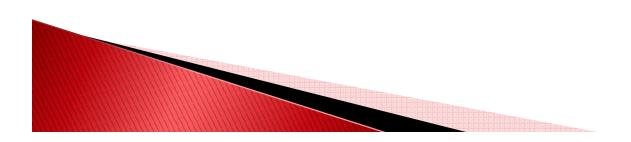
Responsibility: XX – Primary X – Secondary

Team Introduction Project Objective Project Design Project Progress ► Finance ► Conclusion ► Future Work

Workload Distribution
 Challenges/ Changes
 Schedule

Challenges/ Changes

- Central Processor
 - o Initially chose Raspberry PI
 - Kinect requires full architecture (Rasp PI has ARM)
 - In need of idle laptop
 - Need to install Ubuntu
 - End of semester
 - Modified a Chromebook
 - Broke down, lost everything, did it again



Challenges/ Changes

Pit Detection

Sensor measurements were too unstable

- Kinect is not designed for use during movement
- Problem found too late in development
- Alternatives were too complicated
 - E.g. requiring mapping, modeling and tracking environment, etc.
- Had to give up this feature

Challenges / Changes

- > User Interface: 3x5 Array
 - For POC device, only 3x3 array was planned
 - Was not too hard to extend this to 3x5 more interesting as well

Challenges/ Changes

Circuitry Work/ Wiring

UICC was introduced after proposal

- A lot more work but not reflected in schedule
- Had to put all on hold and power through, delayed software implementation



Team Introduction Project Objective Project Design Project Progress ► Finance ► Conclusion ► Future Work

✓Workload Distribution
 ✓Challenges/ Changes
 ✓Schedule

Schedule

1/6 1/13 1/20 1/27 2/3 2/10 2/17 2/24 3/3 3/10 3/17 3/24 3/31 4/7 4/14

Team Introduction Project Objective Project Design Project Progress ➢ Finance ► Conclusion ► Future Work

✓ Budget
 ✓ Market / Competition

Budget

Funded \$350 via ESSEF

Component	Part	Est. Cost	Actual Cost
Depth Camera	XBOX 360 Kinect Sensor	\$130	\$56
Microcontroller	Arduino Uno, REV 3	\$35	-
Processor	Raspberry Pi- Model A	\$40	-
Vibration Motors	Vibration Motor, Flat Coin	\$85	\$63
Accelerometer	IC Accelerometer, XY AXIS	\$10	-
Mount Apparatus	Bike Helmet	\$35	-
UI Mount	Head Band	\$10	-
В	\$10	-	
Pro	\$10	\$3	
Electronic Comp. Various		\$35	\$226
	\$50	\$13	
Additional Parts,	\$50	\$25	
	Total	\$500	\$386

Team Introduction Project Objective Project Design Project Progress ➢ Finance ► Conclusion ► Future Work

✓ Budget ✓ Market/ Competition

Market/ Competition

Camera	Motors	Proc. + Contr.	Elec. Comp.	Other Parts	Overhead	Total
\$30	\$15	\$25	\$25	\$25	20%	\$144

> We expect for a production model under \$150

- With mass production, component costs can come down
- Design with only necessary components to save
- Start as novelty product and go mass production

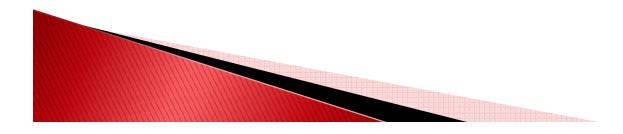

Government subsidies also possible
 Lower retail price, easier to sell

Market/ Competition

- "More than a million visually impaired in Canada"
 CNIB
 - o If secure10% market place, 100,000 units
 - Could enter with 25% already a large market
 - Could license to larger companies:
 - Medical device companies (e.g. GE, Siemens)
 - Google to work with Google glass
- Currently no competition
 - All related technologies we were able to find were in the research phase



Team Introduction Project Objective Project Design Project Progress ► Finance Conclusion Future Work


Conclusion

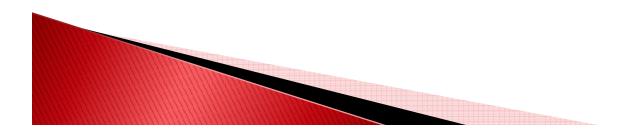
- NOW I SEE is a travel aid device that helps visually impaired patients to navigate easier
- > Our product is easy to use and portable
- Current design is for proof of concept, alternatives could have been implemented as discussed
- NOW I SEE is reasonably priced in comparison with available product with the same level of technology

Team Introduction Project Objective Project Design Project Progress ► Finance ► Conclusion Future Work

Future Work

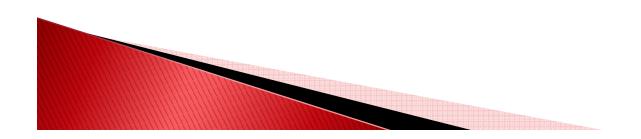
- > Detection of the pits on the ground
- Incorporate depth camera in eye glasses
- > Use safer, light weighted batteries with longer energy capacity
- Improvement of the UI design
- Contacted CNIB asking for any interest in our project

Special Thanks


- > Dr. Kamal Gupta
 - For providing initial ideas for NOW I SEE
- > Dr. Whitmore & Dr. Rawicz
 - For a great course 😊

- Jamal Bahari
 - For having long meetings with us
- All other TAs
 - For their comments on our documents

Questions?



References

- N Gerard, G Medioni. "Visual Aid for the Blind" Internet: http://iris.usc.edu/people/medioni/current_research.html, [accessed: Mar, 2014]
- Eric Berdinis. "Kinecthesia Heptic Belt for The Blind"Internet: http://www.kinecthesia.com/, [accessed Mar, 2014]
- Kajimoto, H., Kanno, Y., & Tachi, S. "Forehead electro-tactile display for vision substitution". In Proc. *EuroHaptics*. Jul 2006.
- K. A. Kaczmarek, "The tongue display unit (TDU) for electrotactile spatiotemporal pattern presentation" *Scientia Iranica*, 18(6), 1476–1485, 2011.
- N. Vuilleme, O. Chenu, A. Moreau-Gaudry, J.Demongeot, Y. Payan. "Motion Control Design for an Economical Robotic Walking Support System: The Robotic Cane", *In Engineering Letters*. Vol. 19. Issue 3. P185, 2011
- Massachusetts Institution of Technology. "MIT scientist designs wearable tactile displays for people with vision and hearing disabilities", *In Global Alliance on Accessible Technologies and Environment*. Internet: http://globalaccessibilitynews.com/2013/06/17/mit-scientist-designs-wearabletactiledisplays-for-people-with-vision-and-hearing-disabilities/ updated 2013 [Accessed: Jan 2014]
- Samzenpus. "Hand-Mounted Sonar for The Blind", *In Slashdot*, Internet: http://tech.slashdot.org/story/11/08/22/0156201/hand-mounted-sonar-for-the-blind, 2011, [Retrieved Jan 2014]
- Adarfruit. "Proximity Sensor Cane". In *Adarfruit Industries*. Internet: http://www.adafruit.com/blog/2010/05/20/proximity-sensor-cane-for-the-blind/ 2010, [Retrieved Jan 2014]
- Y. Z. Zhang, S. S. Yeh. "Motion Control Design for an Economical Robotic Walking Support System: The Robotic Cane". *In Engineering Letters*. Vol. 19. Issue 3. P188-196. 2011

References

- Julius." Electronic Mobility Devices for Persons Who Are Blind or Visually Impaired". In Even Grounds, Accessibility Consulting.2010, [Retrieved Jan 2014]. Available: http://www.evengrounds.com/blog/electronic-mobility-devices-for-persons-who-are-blindorvisuallyimpaired?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+EvenGrounds AccessibilityBlog+(Even+Grounds+Accessibility+Blog)
- MSDN Microsoft. "Kinect for Windows Sensor Components and Specifications". *Microsft MSDN Library reference* 2012 [Retrieved march 2014]. Available: http://msdn.microsoft.com/en-us/library/jj131033.aspx
- MSDN Microsoft. "Kinect for Windows Sensor Components and Specifications". *Microsft MSDN Library reference Depth Range* [Retrieved March 2014]. Available: http://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges
- Levine, R. V. and Norenzayan, A. "The Pace of Life in 31 Countries". Journal of Cross-Cultural Psychology 30 (2): 178-205.1999
- Michael H. Leonard Blog "Raspberry vs. Beaglebone", [Retrieved March 2014], Available: http://www.michaelhleonard.com/raspberry-pi-or-beaglebone-black/
- "Arduino Analog Pins", [Retrieved March 2014] available: http://arduino.cc/en/Tutorial/AnalogInputPins#.Uxn2Efk2wpo
- "Arduino Uno", [Retrieved March 2014], Available: http://arduino.cc/en/Main/ArduinoBoardUno#.Uxpi-Pk2wpo
- "Arduino Power Consumption", [Retrieved March 2014], Available: http://gadgetmakersblog.com/arduino-power-consumption/
- Somatosensory Systems", [Retrieved March 2014], Available: http://neuroscience.uth.tmc.edu/s2/chapter02.html
- "Comparison of Battery types", [Retrieved March 2014], Available: http://en.wikipedia.org/wiki/Comparison_of_battery_types

References

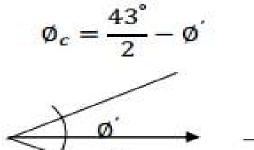
- "Vibration Motor Spec Sheet", [Retrieved March 2014], Available: https://catalog.precisionmicrodrives.com/order-parts/product/312-101-12mm-vibration-motor-3-4mm-type
- "L4931 Voltage Regulator Spec Sheet" [Retrieved March 2014], Available: http://www.st.com/web/en/catalog/sense_power/FM142/CL1015/SC312/SS1733/PF259704
- ROS www.ros.org
- ROS freenect_stack http://wiki.ros.org/freenect_stack
- ROS openni_kinect http://wiki.ros.org/openni_kinect
- ROS Kinect_aux <u>http://wiki.ros.org/kinect_aux</u>
- M. K. Hisham. "Tech replaces Seeing Eye Dog". In *TrendHunder Tech*. 2010,[Retrieved Jan 2014]. Available: http://www.trendhunter.com/trends/mygo-cane-could-replace-seeing-eyedogs
- C. Brigida. "New Technology That Can Help The Blind". *In USC News*. 2013, [Retrieved Jan 2014]. Available: http://news.usc.edu/#!/article/55803/new-technology-that-can-help-the-blind /

Camera's Angle

> Kinect vertical view angle = 43°

$$\phi' = 43^\circ - \phi$$

- > Average height of a normal person is taken to be 1.75 m
- Distance of the object from the person is calculated by:


$$x(m) = \frac{\tan(\emptyset)}{1.75^*(m)}$$

Camera's Angle(cont'd)

σ

 ϕ_c

> Angle of the camera:

Ø

43°

Horizontal plane

Horizontal plane

Subsection Division

- > 15 subsections of vibration motors
- The division in the horizontal plane is more or less uniform
- In the vertical direction, the bottom row will be dedicated as ground, and the rest will be evenly divided

High	High	High	
Low	Low	Low	
Grnd	Grnd	Grnd	

High	High	High
Low	Low	Low
Off	Off	Off