

Solar Powered Battery Charger for Offshore Applications

System Test Plan

Project Members:	: Bharat Advani	
	Marty Gradowski	
	AisteGuden	
	Michael Lew	
	David Stevens	
Contact Person:	David Stevens	
	aquasol-solutions@sfu.ca	
Submitted to:	Dr. Andrew Rawicz – ENSC 440W	
	Steve Whitmore – ENSC 305W	
	School of Engineering Science	
	Simon Fraser University	
Issued Date:	March 31, 2014	

Table of Contents

Glo	ssary	.1
1.	Charging Module	3
2.	Power Management Unit (PMU) Hardware/Electronics	4
3.	Microcontroller (MCU) Power Control	5
4.	Web Application	•7
Ref	erences	8

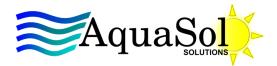
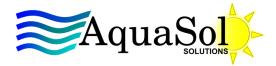

List of Figures

Figure 1: High level block diagram of PMU and MCU evaluation board
--


GLOSSARY

BMS	Battery Management System
-----	---------------------------

- CEC Canadian Electric Code
- CSA Canadian Standards Association
- DC Direct Current; DC loads require a constant voltage to power them
- DFO Department of Fisheries and Oceans
- GPIO General Purpose Input/Output
- GSM Global System for Mobile Communications
- IC Integrated Circuit
- IO Input/Output
- ISM Industrial, Scientific, and Medical usually refers to the 2.4-2.5 GHz frequency band for transmitting information
- MCU Microcontroller Unit
- MPP Maximum Power Point
- MPPT Maximum Power Point Tracking

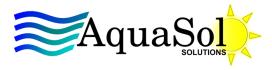
- OCP Over Current Protection
- OCPD Over Current Protection Device
- PCB Printed Circuit Board
- PMU Power Management System
- RH Relative Humidity
- SOC State of Charge
- STC Standard Test Conditions

1. CHARGING MODULE

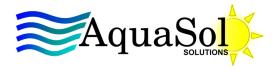
1.1. Over current protection device (OCPD) functionality	
Procedure	Result
Replace the solar panels with a power supply to	□ Pass
source 9 A through the OCPD (9 A circuit	□ Fail
breaker).	
	Comments
Required outcome(s)	
• OCPD trips.	
1.2. Solar panel open-circuit voltage and sho	rt-circuit current
Procedure	Result
Connect the solar panels in series. Measure the	□ Pass
open-circuit voltage and short-circuit current.	
 Required outcome(s) The open-circuit voltage is close to 44.6 V (since the open-circuit voltage of each panel is 22.3 V). The short-circuit current is close to 5.28 A (the short-circuit current of each solar panel). Note: Video will be provided showing required outcomes. 	Comments

2. POWER MANAGEMENT UNIT (PMU) HARDWARE/ELECTRONICS

2.1. Backup battery charger functionality	
Procedure	Result
Connect the backup batteries to a dummy load	□ Pass
resistor to drain some of their capacity, and then	□ Fail
reconnect to PMU electronics. Connect an	
ammeter in series between the backup battery	Comments
charge controller IC and the backup battery pack.	
Connect a voltmeter across the backup battery	
terminals. See Figure 1 in appendix.	
Required outcome(s)	
• The ammeter initially reads no more than 2 A,	
indicating the IC is charging the backup	
batteries.	
• The voltmeter initially reads under 8.2 V,	
indicating the batteries are not at 100% state-	
of-charge (SOC).	
• When the backup battery voltage reaches close	
to 8.2 V, the ammeter reads zero amps,	
indicating no more charging.	
2.2. Source Select Circuit Functionality	
Procedure	Result
Place a voltmeter across the input and output of	□ Pass
the 5 V regulator. Then, disconnect the main	□ Fail
battery pack from the source select circuit.	
	Comments
Required outcome(s)	
• Before disconnecting, the input voltmeter	
reads 20-29.2 V, indicating the main battery	
pack is in use.	
• After disconnecting, the input voltmeter reads	

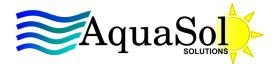


7-8.2 V, indicating the backup batteries are used.


• Check that the regulator output is 5 V in both cases.

3. MICROCONTROLLER (MCU) POWER CONTROL

3.1. CAN communication		
Procedure	Result	
Connect a logic analyzer between the off-the-shelf	□ Pass	
BMS and the PMU.	□ Fail	
Required outcome(s)	Comments	
• The PMU sends a remote CAN frame to the		
BMS, requesting battery status information.		
• The BMS sends the requested CAN data frame		
to the PMU with the SOC, temperature,		
voltage, and current data for all connected		
battery modules.		
3.2. I2C communication		
Procedure	Result	
Connect a logic analyzer between the humidity	□ Pass	
sensor and the MCU.	□ Fail	
Required outcome(s)	Comments	
• An I2C start condition and data request is		
initiated by the MCU.		
• After roughly 50 ms, the MCU sends a read		
request.		
• The sensor replies with two bytes; the MCU		
then creates a stop condition.		



3.3. Unsafe battery conditions	
Procedure	Result
Under voltage condition is triggered by critically	□ Pass
discharging the battery module.	🗆 Fail
Required outcome(s)	Comments
• The BMS sends a warning message to the	
PMU via the CAN interface when cell voltage	
is below 2.8 V.	
• The PMU disconnects the relay connecting the	
loads to the batteries and sends an Ethernet	
warning message to the webserver.	
• The source select should switch to the backup	
battery.	
• Note: This is the only unsafe battery condition	
that can be feasibly tested.	
3.5. High humidity safety shutoff	
Procedure	Result
Place a wet sponge directly on the humidity sensor	□ Pass
to simulate excessive moisture in the enclosure.	□ Fail
Required outcome(s)	Comments
• The PMU sends an immediate Ethernet	
message to the webserver, indicating that the	
system will shut down.	
• The system then shuts down the peripherals	
and the CPU, and disconnects the relay switch	
connecting the loads to the batteries.	

4. WEB APPLICATION

4.1. Display status of active sites	
Procedure	Result
Connect an Ethernet cable between the MCU and	□ Pass
a computer with access to internet.	□ Fail
Required outcome(s)	Comments
• The application automatically displays active	
site information, including battery status and	
any warnings.	
4.2. Battery charge history	
Procedure	Result
Click on a battery icon in the application, and	□ Pass
select 'History'.	□ Fail
Required outcome(s)	Comments
• The application shows the battery charge	
history for that battery.	
4.3. Operating cycle configuration	
Procedure	Result
Click on a battery icon in the application, and	□ Pass
select 'Settings'. Alter the operating cycle.	□ Fail
Required outcome(s)	Comments
• The webserver sends an Ethernet message to	
the PMU for changing the power mode and	
duty cycle.	
• The PMU will change the power mode and	
duty cycle to the required setting.	
• The PMU will send a confirmation Ethernet	
message to the webserver, which will display	

the confirmation message to the user.	

References

APPENDIX

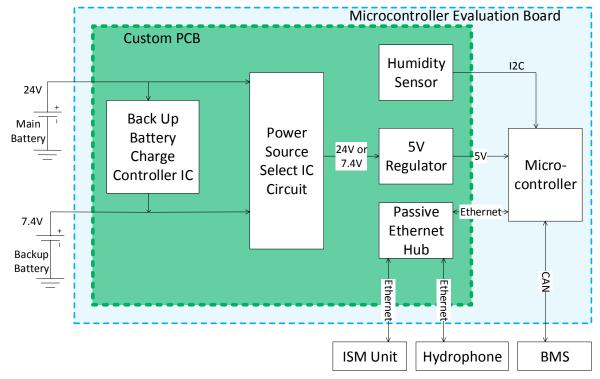


Figure 1: High level block diagram of PMU and MCU evaluation board