OMEGA KEY

Presented by Breakthrough Innovations Group For ENSC 305W / 440W 21/04/2016

Outline

- Team Roles
- Background
- Motivation
- System Overview
- Budget
- Market Analysis
- Schedule
- Problems and Challenges
- Future Plan
- Learning & Outcomes
- Acknowledgements
- Conclusion
- References
- Questions and Answers

Team Roles

David Pallmann CEO and Lead Designer Frank Tran Software Engineer and Lead QA Engineer Steven Timotius Software Engineer and Software Architect Chase Kwak Systems Engineer and Communications Liaison Steven Luu Systems Engineer and Financial Director Steven Liu Systems Engineer and Machinist

Background

- 2011 Survey from Statistics Canada found that 5.8 million people speaking at least two languages at home (17.5% population)
- People are forced to use the standardized english keyboard when they want to type in their own language
- Over 1 million people are working in the professional, scientific and technical services and 1.7 million students going to universities
- People often need special symbols for their technical report and it is not handy to do that with old QWERTY keyboard

Motivation

Problem

- Existing keyboards have lack of versatility and visual feedback with keyboard inputs
- Touch screens are great examples of customizable keyboards but have poor ergonomics and costly

Motivation

Solution

- Create a keyboard which allows users to type in multiple languages and symbols with preset keys
- OLED screens on each key update to show the key's function
- Possible to add software to allow user to customize layouts -Future Plan

System Overview

OLED	OLED	OLED	OLED	Preset
OLED	OLED	OLED	OLED	Rieset
OLED	OLED	OLED	OLED	Preset
Proof of (Concept Model		\$	
Ŷ	-			
			Controllers	5
СОМРЦ	JTER			

Mechanical Design Keycaps

- Key Caps are 3D printed due to the intricate nature of the design which utilizes a cross in the center to connect to the switches to keycaps
- This piece was very challenging to design as it had to integrate the screen, connecting wires, the switches, and the acrylic cover.

Mechanical Design Switch Bed

• Switch Bed

This piece was originally going to be 3D printed as well, however once we became more familiar with the rapid prototyping process it became clear that laser cutting was the best option

The bigger holes are for the switches to rest in and the smaller ones are for wires to go through

Mechanical Design Casing

• Case

It had the least amount of specifications to it and as such we crafted our own with wood

The case had to be large enough to hold all the wires and have a supporting shelf to hold the switch bed

It also has an access port in the back to allow two microcontrollers to plug in

Microcontroller

- Arduino Leonardo board
 - Recognizes the key strokes and retrieve corresponding key code from its memory unit
 - Communicates with computer to send keyboard input data

Microcontroller

• Arduino Mega board

- Communicates with Leonardo
- Retrieves corresponding display layout from its memory and updates each display screen with corresponding image

3 Pre-Defined Layouts

Budget

Proposed Costs

Actual Cost

Parts		Parts	Total Cost (CAD)			
	Total Cost (CAD)	Arduino Mega	68.04			
Microcontrollers	450	Blue Cherry MX Switches	27.20			
	150	Test Display	15.99			
LCD graphic displays	10	Old OLED Displays	88.00			
	40	New OLED Displays	164.89			
Blue Cherry MX Switches	50	Solderable Breadboard	11.99			
	50	MCP23017 Chip	1.82			
Mechanical Keyboard	150	3D Printing	43.00			
	150	Jumper Wires	11.00			
3D printing	60	Protective screen for Keycap	7.60			
		Wood (Pine)	3.83			
Total	550	Shipping & Tax	35			
		Total	476.32			

Market Analysis

• Potential Clients

Anyone wants to customize layouts (Arabic, Hiragana, Special Symbols)

Students / Professionals who need faster access to technical symbols

• Estimated Manufacturing Cost

If we have facility to mass produce the product, it will cost approximately \$85/unit

• Estimated Retail cost

\$200/unit

Market Analysis

Competitors

Company Name	Razer	Sonder Design	Art. Lebedev Studio
Model Name	Razer Orbweaver	Sonder Keyboard	Optimus Maximus
Cost (USD)	130	300	1600
Features	Programmable Keys, Adjustable hand module	78 Customizable E-ink display	Customizable Layout, HTML codes, math functions

Market Analysis

 Razer Orbweaver: Targeting customer is narrow; mostly for gamers

Gaming keyboard have excess of feature that go unused for most consumers

- Sonder Keyboard: Not yet released, no publicized working models
- Optimus Maximus: Too expensive, ~\$1600

Schedule

Proposed Schedule

Schedule

Actual Schedule

Task Name	Jan			Feb				Mar				Apr						
	Jan 3	Jan 10	Jan 17	Jan 24	Jan 31	Feb 7	Feb 14	Feb 21	Feb 28	Mar 6	Mar 13	Mar 20	Mar 27	Apr 3	Apr 10	Apr 17	Apr 24	Ма
i 💌	0 9	Q. 7																
Research												Research						
Proposal				Proposa	al													
Functional Specifica							Functio	nal Specific	ation									
Design Specification							1		(Design	Specificati	n						
Part purchasing		1													Part purcha	sing		
Hardware Developme														Hardware [Development			
Hardware Assembly																Hardw	are Assemb	ily
Software Developme									((0-	So	ftware Deve	lopment		
Integration Testing																Inte	gration Testi	ing
Debugging																Debugging		
Documentation					la W	1					1					Docu	mentation	
Progress report												-	Progre	ss report				

Problems and Challenges

- First major design challenge was connecting all the display screens and switches.
 - Not enough GPIO ports on a single board for all the peripherals
 - Initially, wanted to use a GPIO expander, but unsure if enough power. Also makes software more complicated
 - Later decided to use 2 Arduino boards instead of just 1
- Second problem was connected to the OLED display
 - Did not have the machine soldering facilities to connect the first set of display screens we bought
 - Had to return them and purchase another kind of display screen
 - Had to redesign other parts to fit the larger screen
 - Setback in budget and schedule (2 weeks)

Problems and Challenges

- Another major problem was finding suitable facilities to construct our casing for the keyboard
 - We had difficulties find an appropriate facility with the tools we required
- Significant issue throughout the project was time management
 - Hardware assembly process stalled due to time for parts to arrive
 - Further aggravated by display screen issue
 - Longer than anticipated time taken to design manufactured parts
 - Resulted in reduced time for system testing

Future Plan

- Create a user interface that allows users to customize individual characters and layouts
- Evaluate the cost to benefit analysis of creating multiple screens to just one large one with see through screens
- Evaluate the cost to benefit analysis of a smaller 'helper' keyboard to a full keyboard

Learning and Outcomes

- Teamwork skills
- Time Management
- Budget Management
- Project Management
- Technical Writing Skill
- Arduino Programming
- Circuitry Design
- Hardware Integration
- Mechanical Design
- Machining skills

Acknowledgements

• We would like to thank the following people for evaluating the idea of the Omega key and bring forward new applications

Dr. Louise Coulter Franklin Phan Kyle Rempel Jevon MacKinnon Friends and family of the group members

• We would also like to thank our professors and TAs for teaching us better ways of creating projects

Steve Whitmore Dr. Andrew Rawicz Dr. Ash M. Parameswaran Hsiu Yang Tseng Jamal Bahari Mahssa Abdollahi Mona Rahbar Soroush Haeri

Special thanks to Gary Shum for providing knowledge and expertise in rapid prototyping

Conclusion

- Omega Key is a proof of concept model
- Improvements shall be made for production purpose
- Can be competitive in the market because of its simplified functionality and cheap retail price
- We learned both soft and technical skills during this project

References

- [1] Statistics Canada 2011 Census (2016, Jan 21). Retrieved from https://www12.statcan.gc.ca/census-recensement/2011/as-sa/98-314x/98-314-x2011001-eng.cfm
- [2] Students going to university (2016, Jan 21). Retrieved from http://www.univcan.ca/universities/facts-and-stats/
- [3] Technical Jobs Sector (2016, Jan 19). Retrieved from http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/econ40eng.htm

Questions?

