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Abstract—Since compressed bit-streams are subject to corrup-
tion, or are lost, error control techniques are very important for
video communication, and video communication systems could
confront errors in two ways, which are error resilience, and
error concealment. Because the compressed video bit-streams are
very sensitive to packet loss, the error easily propagates through
other frames, and the video communication system should have
an error resilience capability to avert this problem. Reference
Picture Selection (RPS) is a powerful error resilience technique
for video streaming, yet it consumes significant computation
resources at the time of streaming. The first part of this paper
proposes a two-stage H.264 compatible encoder that enables the
use of RPS at significantly reduced computational cost and with
only a minor penalty in coding performance. The second part
of the paper proposes a non-causal whole-frame concealment
algorithm. Future, the second part of the paper proposes a non-
causal whole-frame concealment algorithm. This algorithm tries
to conceal lost frames using information from three different
source: information from previous frames, upcoming frames, and
the reset frame (if the communication system uses NACK-RPS as
the error resilience method). To the best knowledge of the author,
all previously proposed methods have tried to use the information
offered by previously frames to conceal the whole-frame loss.

Index Terms—Video coding, Video streaming, Reference Pic-
ture Selection, Error concealment, Error resilience, and Whole-
frame loss.

I. INTRODUCTION

RECENTLY, video communication over lossy channels,
such as the internet and wireless channels, has received

increasing attention. During transmission over a lossy channel,
the communication system could confront errors in two ways:
error resilience and error concealment.

First, error propagation is a serious problem affecting trans-
mission of predicatively coded video. Errors cause the received
frame at the decoder to be different from the ones used in
the encoder for motion compensation. Once an erroneous
frame enters the decoder’s motion compensation loop, the error
propagates to the future frames and degrades the quality of the
decoded video.

To prevent such error propagation, several methods have
been proposed [1], most relying on the feedback information
about errors sent from the decoder to the encoder. In the
simplest such error control scheme, upon receiving a noti-
fication about an error, the encoder encodes the following
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frame in the I-mode. Since the I-frame resets the state of the
coding loop, error propagation is stopped. However, compres-
sion efficiency suffers significantly, since intra-frame coding
is much less efficient than motion-compensated predictive
coding. An alternative method for stopping error propagation,
but without significant loss of coding efficiency, is Reference
Picture Selection (RPS) [2]. In this scheme, the encoder will
not use for prediction those frames that have been flagged as
erroneous by the decoder. In this way, error propagation is
stopped without significant loss of coding efficiency, because
the encoder can still remove some temporal redundancy form
the video signal through motion compensation. For this reason,
provisions for enabling RPS have been incorporated in Annex
U of H.263 video coding standard, and also in the latest
H.246/AVC video coding standard [3].

Simulations of RPS have demonstrated its effectiveness and
advantages against other popular error control schemes such
as Forward Error Correction (FEC) and Automatic Repeat
reQuest (ARQ) [4]. However, the use of RPS in practical
video streaming systems has been fairly limited. The main
reason is the computational burden associated with RPS at
streaming time. The frame to be used as the reference for
motion-compensated prediction is not known in advance, and
needs to be chosen at transmission time based on decoder
feedback. Hence, the encoder needs to operate in real time. In
this paper we propose a H.264-compatible two-stage encoder
that significantly reduces the computational cost of RPS at the
expense of additional disk space at the server. Its structure is
described in the following section.

The second improvement involves trying to estimate the lost
frame in the decoder and adding an estimated one in order to
enhance the decoded video (error concealment). [5], [6], [7],
and [8] proposed several error concealment methods,which
use temporal, spatial, and spatiotemporal interpolation meth-
ods. [9], and [10] provide a good review of different error
concealment methods. [6] uses spatial information of the
lost MB in the Discrete Cosine Transform (DCT) domain
and assumes the recovered area is smooth. [7], and [8] uses
spatiotemporal information and uses a boundary matching
algorithm[11], [12] to reestimate a motion vector for the lost
MB.

But when a whole-frame loss happens, none of above
described methods are applicable because no neighborhood
is available to use in interpolation or to use in boundary
matching algorithm. [13] proposed a whole-frame loss con-
cealment method, which uses an optical flow (OF) model [14]
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to estimate the motion vectors for the lost frame and uses
zero residual to complete the frame concealment. Here, the
proposed method in [13] assumes that every object has a
constant velocity and performs the following steps [15]:

1) Estimation of the optical flow: If frame t has been
lost, for each pixel in frame t-1, the algorithm computes
a forward motion vector (FMV) in order to fill up
a FMV field by assuming each pixel had a constant
velocity. Moreover, to save memory, it rounds these
motion vectors into half pixel resolution.

2) Spatial regularization of the FMV: Since the encoder
can code some MBs in intra mode, some empty areas are
available in the FMV field. The algorithm fills them up
via vector median filter with a 7×7 kernel size and then
uses another vector median filter with 15×15 kernel for
regularization of the FMV field.

3) Projection onto missing frame: The algorithm recon-
structs frame t using the FMV field generated in the
previous step. Since the motion-vectors have half pixel
accuracy, the algorithm should copy every pixel in frame
t-1 to a 2×2 neighborhood in frame t, onto the position
it points to according to associated FMV. Because some
pixels of the reconstructed image can have multiple
contributions, the algorithm simply average them.

4) Interpolation of missing pixels: After projection, the
reconstructed frame may have some empty areas. The
algorithm fills these points by recursively using a 9× 9
median filter.

5) Filtering and downsampling: As a final step, the
reconstructed frame is created by downsampling of the
image from the previous step with factor 2

Despite the high performance of the proposed algorithm
in [13], it consumes significant computational resources in
the decoder because it works with pixels. In [15], the au-
thors proposed a block-based error concealment method for
H.264/AVC, which works as outlined:

1) Searching for a suitable reference frame: Since
H.264/AVC encoder can support multiple reference
frames, the proposed algorithm in this paper searches for
the nearest available picture that has significant number
of inter coded MBs, which is usually frame t-1 if frame
t is the lost one.

2) Motion vector projection: For each pixel in frame t-1,
the algorithm projects its motion vector to frame t and
adds this information to its corresponding 4 × 4 block
in frame t.

3) Statistics collection: As well as the information stored
in 4× 4 blocks, it computes the following statistics for
each 16× 16 in frame t.
• M16×16: Average of projected MVs into a 16× 16

MB
• M4×4: Average of projected MVs into a 4×4 block
• σ16×16: Variance of projected MVs into a 16 × 16

MB
• σ4×4: Variance of projected MVs into a 4×4 block
• N16×16: Number of projected MVs into a 16 × 16

MB

Fig. 1. Standard video coder based on motion compensation.

• N4×4: Number of projected MVs into a 4×4 block
4) MB and block level motion estimation: In this level,

if the following condition is true,

(M16×16 < THRV16×16)AND(N16×16 > THRN16×16)

, the algorithm decides to assign M16×16 to the corre-
sponding MB as the motion vector. If the algorithm fails
in the previous step it checks the following condition:

(σ4×4 < THRV4×4)AND(N4×4 > THRN4×4)

. If it is true, the algorithm assigns M4×4 to the
corresponding block. This step is iterated, lowering the
threshold value, until all the blocks have their corre-
sponding motion vector.

5) Picture reconstruction: Finally, enough information is
gathered to reconstruct the lost frame in the motion
compensation loop and the loop filter available in the
encoder.

The rest of this paper is organized as follows. We describe
the proposed 2-stage encoder in section II and non-causal
whole-frame concealment algorithm in section III. Then we
present the experimental results in section IV to verify the
performance of proposed encoder and the non-causal algo-
rithm. Finally in section V, we summarize proposed 2-satege
encoder and concealment algorithm.

II. PROPOSED 2-STAGE ENCODER

Fig. 1 shows the structure of a standard video coder
based on motion-compensated prediction [14]. Incoming video
frame (called ”current frame”) is subject to motion estimation
with respect to previous reconstructed frame(s). Using the
resulting motion vectors (MVs), a prediction of the current
frame is made. The difference between the current frame and
the prediction (called motion-compensated prediction residual,
MCPR) is then subject to Discrete Cosine Transform (DCT),
quantization, and entropy coding along with MVs, to create
the compressed bit stream. In addition, quantized MCPR is
dequantized, transformed with inverse DCT (IDCT) and added
to the prediction to create the reconstructed version of the
current frame, which is then stored in the frame buffer for
future motion estimation and compensation.

According to [16], [17], motion estimation accounts for
about 80% of the processing time in P-frame coding. However,
in typical streaming applications such as video-on-demand,
video content is available ahead of streaming time. This gives
us the opportunity to perform motion estimation ahead of
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Fig. 2. The first stage of the two-stage encoder.

time, leaving motion compensation, quantization, and entropy
coding for real-time operation during the streaming session.
Hence, in our proposed two-stage encoder, we reduce real-time
processing requirements of the video encoder by decoupling
motion estimation from motion compensation.

In the first stage, the encoder estimates MVs between
each frame and its previous N frames, and stores them for
possible use in the second stage. Parameter N determines how
many previous frames can be used as references for motion-
compensated prediction, and should be chosen depending
on the maximum expected Round Trip Time (RTT ). For
example, if the maximum RTT = 110ms = 0.11s , and
the frame rate is f = 30fps, then N = dRTT × fe = 4
frames. The first stage can be thought of as the standard motion
compensation loop without entropy coding, as shown in Fig. 2.
The reference picture buffer holds N previous reconstructed
frames, and MVs are estimated between the current and each
of these N previous frames. The output of the first stage are
MVs - up to N MV fields for each frame.

The second stage is the standard motion compensation loop
without motion estimation, as shown in Fig. 3. Instead of
motion estimation, precomputed MVs from the first stage are
used in the loop. Depending on the feedback from the decoder,
the encoder chooses the appropriate reference frame from the
reference picture buffer, and uses the associated (precomputed)
MV field to perform motion compensation. Only this second
stage needs to run at streaming time. By avoiding motion
estimation, the second stage of the two-stage encoder has a
much lower complexity than the standard encoder, and is more
suitable for real-time operation.

Note that the proposed two-stage encoder generates the
compressed video bitstream in the second stage, during the
streaming session. Prior to streaming, video is stored in raw
(uncompressed) form at the server along with the motion
vectors generated in the first stage. Hence, reducing the
complexity of the second stage, which needs to run in real
time during the streaming session, will cost us some extra
storage space at the server. To estimate this extra cost, we
can use the simplified analyis as follows. Suppose that, on the
average, one motion vector is assigned to every 8×8 block of
pixels in each frame (in reality, larger or smaller block sizes
may be used; some blocks are coded in the I-mode without
any associated motion information). If the search range is
±127, then x- and y-component of a motion vector each take
8 bits (one byte) to store. Hence, we get two extra bytes
for each group of 64 pixels, which represents an increase
of 2/64 ≈ 3% for grayscale video, or 2/96 ≈ 2% for

Fig. 3. The second stage of the two-stage encoder.

YUV 4:2:0 video. So the increase in storage requirements
is approximately 2% − 3% with respect to raw video size.
Whether the ability to do fast RPS justifies this increase in
size and the fact that the video is not compressed until the
streaming begins depends on the particular application and
the associated business model. Availability of cheap storage
makes this trade-off very attractive.

Another point that needs to be considered is the issue
of quantization of reference frames. Note that the standard
encoder of Fig. 1 estimates the motion between the recon-
structed (i.e., quantized) previous frame, and the original (i.e.,
unquantized) current frame. Since the quantization parameter
QP may vary, one may wonder what kind of effect would
this have on the resulting MVs, and subsequently on the
compression performance. It turns out that different QP values
generally lead to different MVs. In the following section,
among other things, we study the effect of QP values used
in the first stage on the compression performance achieved in
the second stage of our two-stage encoder.

III. PROPOSED NON-CAUSAL WHOLE-FRAME
CONCEALMENT

This section will describe a novel non-causal whole-frame
concealment method. To the best knowledge of the author, all
previously proposed methods have tried to use the information
offered by previously frames to conceal the whole-frame loss,
and the proposed method is the first algorithm that uses non-
causal information sources. To explain the algorithm more
precisely, we can divide it in to two steps. The first step uses an
Optical Flow principle [14] and assumes that every object in
the video has a constant velocity very similar to what assumed
in [13]. Subsequently, the second step uses a boundary-
matching algorithm to reestimate the motion vectors of the
remaining areas from the first step. sub-section III-A will
discuss the first part of the algorithm, and sub-section III-B
will discuss the second part of the algorithm.

A. Non-causal optical flow

The first step of the algorithm uses the optical-flow to
estimate the motion vectors of the lost frame. It assumes
that every object in the video has a constant velocity. It is
assumed that the algorithm works sequentially in time forward
direction, but it uses non-causal information during error
concealment. Therefore, when the algorithm tries to conceal
frame t, it has access to all previous frames even their original
version or their concealed version.
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Fig. 4. causal source, original motion vector from frame t-3 to frame t-1
showed by solid vector, estimated motion vector from frame t-1 to frame t,
showed by dashed vector

[t]

Fig. 5. Anti-causal source, original motion vector from frame t+1 to frame
t+2 showed by solid vector, estimated motion vectors for two lost frames
from frame t-1 to frame t and from frame t to frame t+1, showed by dashed
vectors

If frame t has been lost, the algorithm has three different
sources of information to estimate the motion vectors.
• causal source: Frame t-1 can act as a causal source

of information for motion vector estimation. With the
assumption of constant velocity for each pixel in frame
t-1, the algorithm can find the next place for each pixel
in frame t-1 by extending and scaling its motion vector
to frame t (except for the intra encoded pixels in frame t-
1). Estimation from a causal source is illustrated in Fig 4
and Algorithm 1.

• Anti-causal source: Here, the algorithm tries to use the
next correctly received frame and continues the motion
vectors of the next correctly received frame in the time-
reversed direction. Estimation from anti-causal source is
illustrated in Fig 5 and Algorithm 2.

• Non-causal source: If the video communication system
uses NACK-RPS as the error resilience technique, the

Algorithm 1 causal motion vector estimation
if frame t is lost then

Initialize ]candidatecausal(pt, t) ← 0
for all points pt−1 in frame t-1 do

if p belongs to a P-coded block then
pt = pt−1 + MV (pt−1,t−1)

index(pt−1,t−1)

MV (pt, t) = MV (pt−1,t−1)
index(pt−1,t−1)

Increase ]candidatecausal(pt, t) by one
end if

end for
for all points pt in frame t do

if ]candidatecausal(pt, t) == 1 then
SET (MVcausal(pt, t) is valid)

end if
end for

end if

Fig. 6. Non-causal source, original motion vector from frame t-1 to frame
t-2 showed by solid vector, estimated motion vector from frame t-1 to frame
t, showed by dashed vector

proposed algorithm can detect the reset frame and then
use its motion vectors in order to estimate the lost frame’s
motion vectors. Estimation from a non-causal source is
illustrated in Fig 6.

After continuing and projecting all motion vectors from
a certain source (causal, anti-causal, or non-causal) for the
lost frame, for each point in the lost frame, three possible
outcomes can result: having only one candidate as its motion
vector, having no candidate as its motion vector, or having
more than one candidate as its motion vectors. Since occlusion
may cause a pixel to have more than one candidate or may
cause a pixel to have no candidate (empty area), and intra
coded blocks may cause a pixel to have no candidate (empty
area), the algorithm uses pixels with only one candidate from
a certain source. Now, the question is which source is more
accurate and should be used first? Having only one candidate
does not guarantee that a point is occlusion free, but the causal
source gives the best chance for the algorithm to escape from
these uncertain points. Therefore, at first, the algorithm tries
to use accurate points (points with only one candidate for
their motion vectors) in the causal source. Then, it tries to use
accurate points in the anti-causal source to fill the remaining
points from the previous step (causal estimation). Finally, it
tries to estimate the remaining points from the non-causal

Algorithm 2 Anti-causal motion vector estimation
if frame t is lost then

Initialize ]candidateanti−causal(pt, t) ← 0
tn ← FindNextCorrectlyReceivedFrame(t)
for all points ptn in frame tn do

if p belongs to a P-coded block then
pt = ptn + tn−t

index(ptn ,tn) .MV (pt−1, t− 1)

MV (pt, t) = MV (pt−n,tn)
index(ptn ,tn)

Increase ]candidateAnti−causal(pt, t) by one
end if

end for
for all points pt in frame t do

if ]candidateAnti−causal(pt, t) == 1 then
SET (MVAnti−causal(pt, t) is valid)

end if
end for

end if
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source because motion vectors in non-causal source have a
large temporal length and this fact reduces the accuracy of
our assumption (constant velocity of objects).

After performing all the tasks outlined above, the algorithm
removes isolated points in the FMV field because they are
suspected of being noisy. In our algorithm, an isolated point
is defined as a point which has less than 5 neighbors in a 5×5
mask neighborhood.

B. Spatiotemporal boundary matching algorithm

The boundary matching algorithm has proven to be a power-
ful spatiotemporal technique in video error concealment. The
Boundary matching algorithm uses two important properties
of video signals: temporal correlation and spatial correlation.
In video signals, a strong temporal correlation usually exists
between current frame and previous frames. Therefore, the
empty area in the lost frame after the non-causal motion
estimation in sub section III-A can be replaced with an area
in a previous frame with the same shape. Spatial correlation
between spatially neighboring pixels allows us to use available
neighboring pixels, which create the boundary of empty area,
in order to find the best match for the empty area from a
previous frame [7], [8], [18]. The algorithm uses the sum
of squared difference (SSD) of boundaries as the distortion
function and tries to find the motion vector corresponding to
the minimum measured distortion function [8].

IV. EXPERIMENTAL RESULTS

A. 2-stage encoder

Both stages of our two-stage encoder have been imple-
mented using the JM 12.4 reference software. The necessary
modifications were made to store MVs on the hard disk in the
first stage, and use these MVs instead of motion estimation in
the second stage. The performance of the two-stage encoder
was compared aginst the standard JM 12.4 encoder on several

Algorithm 3 Non-causal motion vector estimation
if frame t is lost then

Initialize ]candidatenon−causal(pt, t) ← 0
tn ← FindRPSNACKResetFrame(t)
if RPSNAKresetframeisavailable then

for all points ptn in frame tn do
if p belongs to a P-coded block then

pt = ptn + tn−t
index(ptn ,tn) .MV (pt−1, t− 1)

MV (pt, t) = MV (pt−n,tn)
index(ptn ,tn)

Increase ]candidateNon−causal(pt, t) by one
end if

end for
for all points pt in frame t do

if ]candidateNon−causal(pt, t) == 1 then
SET (MVAnti−causal(pt, t) is valid)

end if
end for

end if
end if

test sequences - Bus, Football, and Foreman - all in YUV 4:2:0
format, CIF resolution, at 30 fps.

In subsection IV-A1, we validate the performance of the
two-stage encoder and investigate the effects of using different
QP values in the two stages. Next, in subsection IV-A2 we
test the performance of the two-stage encoder with RPS over
a lossy network. Finally, in subsection IV-A2 we illustrate the
execution speed of the second stage of the two-stage encoder
by comparing its execution time to the JM 12.4 encoder.

1) Characterization of the two-stage encoder: To charac-
terize the two-stage encoder, we perform the following tests.
For the first stage of the encoder, we turn off the rate control
of the encoder, and set the quantization parameter manually
to QP ∈ {0, 25, 30, 35, 40}, where QP = 0 corresponds to
using the original (unquantized) previous frames for motion
estimation and compensation. Using these QP values, we
estimate the MVs between each frame and its previous N = 16
frames. For each QP value, the output of this stage is the set
of MVs, which we store on the hard disk.

In the second stage, we keep the rate control off, and choose
various values of QP between 26 and 42 to cover a range of
QP values that are typically used in encoding. For each of the
QP values in the second stage, we read from the hard disk
the MVs corresponding to one QP value from the first stage,
and use those MVs for encoding. In this test we are testing
coding efficiency rather than lossy transmission performance,
so we only use the MVs between the current frame and its
most recent previous frame. In Figures 7 - 9, we show the
PSNR difference between the the video produced by the JM
encoder (which uses the same QP value as the second stage of
our encoder), and our two-stage encoder which, in the second
stage, uses the QP value indicated on the horizontal axis in
the graph. Note that when the QP values from the first stage
and the second stage match, the two-stage encoder produces
the same video quality (indeed, the same bitstream) as the JM
encoder. When there is a mismatch in the two QP values, the
performance degrades. Hence, for VBR video (with fixed QP),
the two-stage encoder can achieve the same performance as
the JM encoder, as long as the same QP value is used in both
stages. However, for CBR video, QP values change according
to the rate control algorithm employed. In order to achieve
the same performance as the JM encoder, we would need to
generate and store MVs for all QP values that the JM encoder
may use, which would require additional disk space.

Mismatch in the QP values in the two encoder stages may
also cause increase in the resulting bit rate. Fig. 10 shows
the resulting bit rate of the two-stage encoder, normalized to
the bit rate produced by the JM 12.4 encoder for the Bus
sequence. The data for the other two sequences is similar,
and not included in the paper due to space constraints. As
in Figures 7 - 9, we see that the two-stage encoder produces
the same bitrate as the JM encoder as long as the QP values
used in the two stages are the same. Overall, the results show
that the two-stage encoder can have the same compression
performance as the standard H.264/AVC encoder if the second
encoding stage has access to the same MVs as the standard
encoder. In the CBR case, this means that the first encoding
stage needs to produce and store MVs for all QP values that
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Fig. 7. Quality degradation when QP in the first stage (QP1) is different
from the QP in the second stage (Bus).
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Fig. 8. Quality degradation when QP in the first stage (QP1) is different
from the QP in the second stage (Foreman).

are likely to be used by the standard encoder.
2) Performance over a lossy network: To test the perfor-

mance of the two-stage encoder over a lossy network, we
assume that each frame is sent in a single RTP packet. To
emulate packet loss, we use packet traces from [19] with
average loss rates of 0.05, 0.10, and 0.20. The server uses
ACK-based RPS to decide on the reference frame to be used
for motion-compensated prediction. Acknowledgements are
assumed to be delivered correctly, but with a variable RTT
generated as a normal random variable with a mean of 120 ms
and standard deviation of 2 ms. In this test, both the JM
encoder and the second stage of our two-stage encoder use
rate control, with bit rate ∈ {500, 750, 1000} kbps. The
second stage of the two-stage encoder uses MVs produced by
using QP = 30 in the first stage. We ran 10 simulation runs
for the loss rate of 0.05, and 5 runs for the other two loss
rates. The average PSNR results are shown in Fig. 11 for the
first 150 frames of Football. The performance gap between
the JM encoder and our two-stage encoder is no more than
0.3 dB in this lossy transmission scenario with rate control.
Similar results were obtained for the other two sequences.

3) Encoding speed: To test the encoding speed, we com-
pare the time it takes to encode the first 250 frames of Foreman
by the JM 12.4 encoder, and the second stage of our two-
stage encoder. Both were compiled using the Microsoft Visual
Studio 2005 C++ compiler, and tested on the Intel Centrino
machine with 1.70 GHz CPU and 512 MB of RAM. Encoding
times are listed in Table I for N ∈ {4, 8, 12, 16} frames in
the reference picture buffer. Encoding time for the two-stage
encoder includes reading the precomputed MVs from the hard
disk. Note that neither encoder is optimized for the particular
processor used in this test; in fact, both are based on the
general-purpose JM 12.4 software, which is rather slow, so the
encoding times listed in the table are somewhat pessimistic.
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Fig. 9. Quality degradation when QP in the first stage (QP1) is different
from the QP in the second stage (Football).
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Fig. 10. Bit-rate increase when QP in the first stage (QP1) is different from
the QP in the second stage (Bus).

As shown, the second stage of our two-stage encoder achieves
approximately a 10-fold speed-up compared to the JM encoder
for N = 4, and even higher speed-up for larger N .

B. Non-causal whole-frame concealment
There is no experimental result for this part.

V. CONCLUSION

In this paper, we have described a two-stage H.264 com-
patible video encoder, that is suitable for real-time video
streaming with RPS. The proposed encoder has a compression
performance comparable to JM12.4 encoder, while achiev-
ing significant encoding speed-up at streaming time. This
accerelation is achieved at the expense of additional storage
space needed to hold the pre-computed motion vectors and
uncompressed video prior to streaming.

In addition, this paper proposes a novel non-causal whole-
frame error concealment algorithm. The proposed error con-
cealment algorithm has the ability to extract the information
in the preceding frames and succeeding frame and uses this
information to conceal the lost frame. NACK-RPS is a success-
ful error resilience method. The proposed error concealment
algorithm has the ability to detect use of NACK-RPS and
work with NACK-RPS jointly, consequently provides better
performance in dealing with errors.

N JM 12.4 encoder Two-stage encoder
4 1389 144
8 2500 151
12 1325 157
16 3846 161

TABLE I
ENCODING TIME (IN SECONDS) OF THE FIRST 250 FRAMES OF Foreman

WITH N FRAMES IN THE REFERENCE PICTURE BUFFER.
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Fig. 11. PSNR over packet traces from [19] using the first 150 frames of
Football.
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Joint Source-Channel Decoding of 
JPEG2000 Images with Unequal Loss Protection 

Sohail Bahmani 

  

 
  

Abstract—This paper presents a method for joint decoding of 
JPEG2000 bitstreams and Reed-Solomon codes in the context of 
unequal loss protection. When the Reed-Solomon decoder is 
unable to retrieve the erased source symbols, the proposed joint 
decoder searches through the set of possible erased source 
symbols, making use of error resilient features of JPEG2000 to 
retrieve the correct symbols. To expedite the search process, a 
relatively small amount of side information is transmitted with 
high reliability. The joint decoder can be used as an add-on 
module to some of the existing schemes for unequal loss 
protection and can improve the PSNR of decoded images by over 
10 dB in some cases. 
 

Index Terms—Unequal loss protection, JPEG2000, Reed-
Solomon code, joint source-channel decoding. Information symbols Parity symbols 
 

I. INTRODUCTION 
ecent developments in scalable image and video coding, 
which led to the emergence of scalable coding standards 

such as JPEG2000 [1] and H.264/SVC [2], have become the 
motivation for researchers to investigate robust transmission 
of scalable bitstreams over lossy channels. Due to the 
progressive traits of the scalable bitstreams, they are more 
subject to error propagation. The first erroneous or erased bit 
in these bitstreams can damage all the information carried by 
the remainder of the bitstream. Therefore, Unequal Error 
Protection (UEP) and Unequal Loss Protection (ULP) 
schemes have been developed for protecting scalable 
bitstreams against errors and erasures, respectively. 

In this paper, we have focused on transmission of 
JPEG2000 images over packet-based networks; therefore, the 
ULP structure is chosen as the protection framework. To 
protect scalable bitstreams in ULP schemes with erasure 
correction codes, several scenarios have already been 
proposed in [4], [5], and [6].  In these scenarios, knowing the 
channel’s erasure probability distribution, first a quality 
measure is formulated (e.g., expected distiortion, or expected 
Peak-Signal-to-Noise-Ratio (PSNR) of the received 
bitstream.) Then, this measure is optimized as an objective 
function to find a feasible solution to optimal allocation of 
protection symbols to different segments of the bitstream. This 
optimization is usually performed by one of the various 
optimization algorithms such as local search or hill climbing, 
under a constraint on the rate budget (i.e., total number of bits 
allocated for the transmission) [4]-[6]. 

 
Fig. 1. A typical ULP structure 

 
In our previous work on this subject [3], we presented a 

joint source-channel decoding (JSCD) technique for worst-
case scenarios to improve the quality of received JPEG2000 
images transmitted with ULP. By means of the JPEG2000’s 
error resilience (ER) features, this JSCD technique could help 
to extract source information from the received ULP packets 
more than plain ULP decoding can achieve. In this paper, we 
improved the previous JSCD technique such that the time 
required for the additional decoding is significantly reduced. 
However, this improvement requires a marginal increase of 
the rate budget for transmitting some “auxiliary bits.”  In the 
proposed scheme, these auxiliary bits are, in fact, the first few 
significant bits of the source symbols/bytes their erasure 
would escalate the required decoding time. 

This paper is organized as follows: In sections II, the ULP 
structure is explained in more details. Section III, includes a 
brief description of JPEG2000 and its ER features. In section 
IV, the process of JSCD is detailed. Results are presented in 
section V. Note that the reported results are not outcomes of 
experiments. 

II. UNEQUAL LOSS PROTECTION 
As Fig. 1 shows, a ULP structure can be represented by a 

simple table. The packets, which are going to be transmitted 
through the channel, are represented by the rows of this table. 
On the other hand, each column of the table is a systematic 
codeword of an erasure correction code, which contains part 
of the source symbols and their associated parity symbols. 

R 
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Since Reed-Solomon (RS) codes are efficient erasure 
correction codes, they are widely used for ULP. 

To achieve the best outcome of using ULP, it is necessary to 
find the optimal number of redundant symbols in each column 
(i.e., RS parity symbols). Given the operational distortion-rate 
curve of the to-be-transmitted image, the objective function of 
the required optimization can be written as: 

 

( )
0 1

[ ]
j

N

i
i j L f i

E D p D N f
= ≤ ≤ ≥

=
⎛ ⎞
⎜
⎝ ⎠

∑ ∑ j− ⎟ , (1)  

 
where  is the operational distortion-rate function, ( ).D N is 
the number of packets, is the packet’s length (i.e., the 
number of symbols in each packet,)  is the probability of 

having exactly  erasures, and 

L

ip

i jf  is the number of redundant 

symbols used in column. Since the rate budget for 
transmission is limited, this optimization is a constrained 
optimization. One possible constraint is to fix the number of 
packet’s, 

thj

N , and their length, . Under these conditions, the 
optimization algorithm in [6], which uses local search, 
provides competitive outputs while it requires much less time 
for the optimization process. Using the JSCD method, the 
number of received symbols that can be decoded is potentially 
increased, and consequently, the objective function presented 
in (1) would not take the improvements into account. 
Nonetheless, we used the original objective function in [6]’s 
provided C code (i.e., the expected PSNR, which can be 
formed similar to (1),) because the performance improvement 
resulting from modification of the objective function is not 
remarkable. 

L

For , let1 j L≤ ≤ *

jf  be the number of parity symbols that 

is finally assigned to the  column by the optimization 

algorithm. If 

thj
*-j jf=

thj

)

Nk

( ,
j

N k

 represents the number of the source 

symbols in the  column, then for each j from 1 to L,  

symbols are read from the JPEG2000’s bitstream and encoded 
by an RS  encoder. The  column in the ULP frame is 
then filled by the generated RS codeword and the process 
continues for the remaining columns. 

jk

thj

Suppose that, after transmission via a lossy channel, e  
packets are erased from the completely filled the ULP frame. 
Therefore, at the decoder side, only column-wise RS 
codewords with  *

jf e≥  can be successfully decoded. At this 

point, the task of ULP scheme is over and the recovered a part 
of the JPEG2000 bitstream is ready to be source decoded. 
However, after decoding as many columns of the ULP frame 
as the erasures allow, the ER features of the JPEG2000 
bitsream can be exploited to retrieve the transmitted 
information beyond the received packets’ capacity, and thus, 
will have an image with higher quality after source decoding. 

Fig. 2. Typical JPEG2000’s tile-components structure 

III. ERROR RESILIENCE IN JPEG2000 
JPEG2000 is an image compression standard mainly 

developed based on discrete wavelet transform (DWT.) In this 
standard, the raw image is first cut off into rectangular tiles to 
be compressed separately, though multiple tiles are generally 
used for sufficiently large images. After the necessary colour 
transformations are applied to each tile, the resulted tile-
components are transformed by a wavelet/subband transform 
to form the subbands. As illustrated in Fig. 2, in the 
JPEG2000’s hierarchical structure, within the tile-
components, each set of subbands that have a common 
frequency band are referred to as a resolution. Subbands are 
further partitioned into square-shaped segments named code-
blocks, which are the smallest divisions in the JPEG2000 
standard encoded independently. Also, the JPEG2000’s 
encoder can produce bitstreams with various scalability 
properties, each with different ordering of coding-passes in 
the bitstream. Therefore, to conform to our requirements, 
resolution-scalable JPEG2000 bitstreams are used to prevent 
coding-passes of a particular code-block being scattered 
throughout the bitstream. Furthermore, an optional rectangular 
subdivision of resolutions, called a precinct, includes a whole 
number of code-blocks. Although the precincts enable some 
of the JPEG2000’s extra capabilities, including the error 
resilience (ER) feature, they do not have a direct role in the 
compression process. 

The basis for ER features of JPEG2000 is established upon 
the fact that entropy-coded bitstreams are sensitive to errors 
(i.e., a corrupted entropy-coded bitstream could trigger a 
failure during its decoding process.) The quantized wavelet 
samples of each code-block are encoded by MQ-coder, a 
context-based arithmetic coder, bit-plane by bit-plane which is 
the crucial factor in scalability of the JPEG2000 bitstreams. 
This bit-plane coding operation, in JPEG2000, is carried out 
in several alternating passes of three different types. When an 
error occurs in the bitstream generated in one of these so-
called coding-passes, the decoder is able to locate the error 
within the next few following coding-passes [7], [8]. 
Moreover, on decoding failures, the remaining section of the 
code-block’s bitstream would be partially decoded or 
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)

completely discarded depending on the combination of 
applied ER modes. These ER modes, which together form the 
ER features of JPEG2000 bitstreams, are thoroughly explored 
in [8]. 

 

In this paper, two ER modes, namely ERTERM and 
RESTART, are used since they do not interfere with the 
constraints of our JSCD technique. With these two modes 
switched on, inter-code-block error propagation is prevented. 
Activated RESART mode, forces the MQ-coder to restart at 
the beginning of each coding-pass; therefore, each coding-
pass obtains a separate codeword segment. In addition, the 
ERTERM switch decides on the predictable termination 
policies for each MQ and/or raw codeword segment. These 
policies are the means to detect errors in MQ codeword 
segments with high probability. 

IV. JOINT SOURCE-CHANNEL CODING FOR ULP Fig. 3. Typical coding-pass segments inside a section of ULP structure 
 The ULP scheme, on average, can deliver an adequate 

number of source bits for a sufficiently clear image. 
Nonetheless, in the worst cases, when excessive packet 
erasures occur, a significant piece of the transmitted source 
bits would become corrupted. Consequently, the output 
image’s visual quality would be degraded substantially. This 
degradation can be alleviated by our proposed JSCD method. 

Filling locations of  erased symbols would leave only d
CSf  erased symbols in the critical segment’s columns, which 

enables the RS decoder to fill in the remaining erased 
symbols. However, there is no guarantee that the resulted 
columns, which are filled by guessing  erased symbols, 
coincide with what has been transmitted. To ensure the 
correctness of a repaired column of the critical segment, we let 
JPEG2000 attempt to decode the source information contained 
in that column. Since the transmitted JPEG2000 bitstream is 
supposed to be error resilient, an invalid segment in the 
bitsream would cause the decoder’s complaint; in that case, 
the incorrect guess is discarded and another unexamined guess 
among all 

d

2m d× possible guesses is selected for the next 
iteration. Since RS ( ),N k  codes are able to reproduce any set 
of N k−  erased symbols, choosing any arbitrary values for 
the  erased symbols would result in a valid RS codeword, 
though only one of them is correct from JPEG2000’s 
perspective.  

d

In the JSCD technique presented by [7], the ER features of 
JPEG2000 bitstreams are utilized to accelerate convergence of 
the LDPC soft decoder in an iterative fashion. Analogously, in 
JSCD for ULP, JPEG2000’s ER features are exploited to 
verify the validity of the guesses, which are made to decode 
more ULP columns. 

As mentioned in section I, each of the ULP frame’s columns 
is an RS codeword. Therefore, they can be decoded as long as 
the number of their parity symbols is not less than the number 
of erased symbols (i.e., the number of erased packets.) 
Suppose that the ULP frame includes an RS  codeword 
as one of its columns. If packets are erased 
during the transmission ( ), then by filling the locations 
of  erased symbols in the taken column with arbitrary 
values, the RS decoder can fill the remaining erasure 
locations. However, the resulting complete RS codeword is, 
perhaps, not the same as the transmitted RS codeword. Here, 
correctness of the guessed symbols is verified by the ER 
features of JPEG2000; if the JPEG2000’s decoder complains 
of an error, then the next possible unverified RS codeword is 
generated and examined by the JPEG2000’s decoder. 

( ,N k
e N k d= − +
1≥d

d The number of possible guesses is a crucial factor which 
determines the time consumption of the JSCD algorithm. 
However, as concluded in the previous paragraph, the 
information carried by non-erased symbols is not 
advantageous for reducing the number of guesses. Therefore, 
some side information is necessary to speed up the process of 
guessing the erased symbols. This extra information can be 
generated using different strategies; however, the strategy that 
we adopted is to select those symbols that, possibly, have 
more contribution to the total number of guessing iterations, 
and transmit their first few significant bits with high 
protection. Depending on the number of these auxiliary bits 
spent for the selected symbols, and the layout of coding-
passes inside columns of the ULP frame, the JSCD time could 
decline exponentially; but the ratio of the number of spent 
auxiliary bits to the total rate budget should not be ignored. 

To follow this procedure more carefully, first take * 'jf s  as 

the solution to the optimization problem discussed in section 
II. Let 

*

*max
i

CS

i
e f

f f
>

=

CS

 be the number of parity symbols in 

those columns with protection levels just less than e , the 
number of erasure. The superscript CS stands for critical 
segment, a part of the ULP frame that consists of columns that 
have f  parity symbols. To retrieve the information contents 
of a critical segment, it is sufficient to find the correct value of 

erased symbols. CSfd e= −

In Fig. 3, a part of a ULP structure is illustrated in which a 
particular coding-pass (i.e., the hatched cells), has occupied 
more than one symbol in some of the rows/packets. Suppose 
that one of these packets and, consequently, several symbols  
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TABLE I. Average PSNR changes resulted by JSCD with (

2PSNRΔ (dB)) and  without (
1PSNRΔ (dB)) auxiliary bits, and width for the last three 

segments and percentage of required increase in rate budget for auxiliary bits ( .) /R RΔ
    

CS #1 CS #2 CS #3 
Image Loss 

rate  
2PSNRΔ  Width 2PSNRΔ Width 1PSNRΔ 2PSNRΔ Width 1PSNRΔ 1PSNRΔ

/R RΔ (%)

10% +10.0 +10.1 91 +0.7 +0.7 4 0.0 0.0 1 0.65 

20% +6.4 +6.5 70 +1.2 +1.2 10 +0.1 +0.1 3 0.70 LENA 

30% +4.2 +4.6 60 +0.5 +0.9 5 +0.2 +0.4 4 0.72 

10% +7.4 +7.4 93 -0.1 0.0 1 +0.3 +0.3 2 0.78 

20% +5.8 +5.8 73 +0.2 +0.3 3 +0.7 +1.0 2 0.84 BARBARA 

30% +3.5 +3.5 80 +0.2 +0.7 8 0.0 0.0 4 0.95 

10% +3.7 +3.7 75 +0.1 +0.2 9 +0.2 +0.2 6 0.79 

20% +0.0 +0.2 2 +0.6 +0.6 14 +0.4 +0.4 55 0.82 GOLD HILL 

30% -0.5 0.0 1 -0.4 -0.2 2 +0.9 +.9 63 0.89 

10% +9.8 +9.8 85 +0.4 +0.6 4 -0.5 -0.1 1 0.76 

20% 0.0 +0.1 2 +6.7 +6.7 70 +1.2 +1.6 10 0.86 BOAT 

30% +8.7 +8.8 65 +2.1 +2.1 20 +0.4 +0.4 2 0.92 
 
of the mentioned coding-pass are erased. If the erased symbols 
had to be guessed, all of them should be filled with correct 
values to decode the coding-pass perfectly. Therefore, it can 
be expected that in these erasure incidents, the coding-pass’s 
decoding time raises exponentially. To diminish this effect, in 
our proposed strategy, the auxiliary bits are assigned to the 
symbols of each packet, which belong to the same coding-
pass. For example, in Fig. 3, the symbols in columns i through 
i+2 of the fourth row would receive the auxiliary bits, but the 
symbol in the ith column and the third row would not. As a 
result, this policy provides a compromise between improving 
decoding speed and the number of extra bits required. 

I. RESULTS 
To test our JSCD algorithm, first, we encoded the standard 

512×512 gray-scale Lena, Barbara, Gold Hill, and Boat 
images with the Kakadu implementation of JPEG2000 [1] at a 
rate of 0.7782 bits per pixel (bpp.) This rate is chosen, 
because we used 255 packets of 100-bytes each in the ULP 
scheme, which imposes the upper bound for the transmitted 
images’ rate. Moreover, we used the image compressor with 
128×128 precincts and activated ERTERM, RESTART, SOP 
and EPH modes. After that, we derived operational PSNR-rate 
curves of the produced resolution-scalable JPEG2000 images. 
Then, using a C implementation of the algorithm proposed in 
[6], the optimized protection levels of the ULP structure were 
generated for each image at 10%, 20%, and 30% mean loss 
rates.  

In all of our implementations, although other symbol 
lengths are not impractical, for convenient adaptation with 
Kakadu, 8-bit symbols (i.e., bytes), were used as the ULP 
frame’s symbols, or equivalently, the RS codeword’s symbols, 
which are encoded and/or decoded by Phil Karn’s RS codec 
[9]. Also, to make the whole decoding time more attainable, 
only one byte is guessed in each column of critical-segments 
(i.e., ). In addition, the joint source-channel decoder is  1d =

only allowed to correct the undetected wrong guesses of the 
last two columns, when all possible guesses for the present 
column are made unsuccessfully. For the extended JSCD 
method, we considered two auxiliary bits for the symbols 
which need it. Each of the reported results are based on 
averaging outcomes of 100 simulations that were run on a 
desktop PC with an Intel Core 2 Duo 2.13 GHz CPU with 
2GB of RAM. Nonetheless, Fig.’s 4 and 5 are included to 
demonstrate the visual improvements by examples. 

Table I shows the average change in the PSNR, when JSCD 
is performed without use of auxiliary bits ( 1PSNRΔ ) or with 

help of auxiliary bits ( 2PSNRΔ ), both in dB, for different 
tested images at different mean channel loss rates. The 
experiments carried out for the last three possible critical 
segments, are represented in the table by CS#1, CS#2 and 
CS#3. Each critical segment’s width is also reported in the 
table. Additionally, a column is assigned to the percentage of 
required increase in rate budget for sending auxiliary bits 
( /R RΔ ). For sufficiently wide critical segments, both 
methods demonstrate remarkable improvement in the PSNR; 
however, their difference is negligible in most cases. On the 
other hand, for narrow critical segments (e.g., those with one 
or two columns), both methods show a small improvement or 
even a negative change in the PSNR. The quality reduction is 
due to imperfections in the JPEG2000’s ER capabilities, 
which causes some incorrect guesses to remain undetected 
when the short critical segment’s decoding is finished. 

In Table II, the average time cost of both JSCD variations 
are reported along with the time that original ULP decoding 
requires, all in seconds. The time cost of ULP decoding 
without JSCD, and the mean extra times required by JSCD 
with and without the use of auxiliary bits are reported under 
columns T , 1TΔ  and 2TΔ .  

Results show that the auxiliary bits can reduce the time 
required for the JSCD by up to 13 times, at the cost of less 
than only 1% increase in the assigned bit budget; however, the
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Fig. 4. Barbara image transmitted through a channel with 10% loss rate, before JSCD on left (PSNR = 22dB) and after JSCD on right (PSNR = 28.9dB) 

 
 
 
 

 
Fig. 5.  Boat image transmitted through a channel with 20% loss rate, before JSCD on left (PSNR = 24.3dB) and after JSCD on right (PSNR = 30.1dB)
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TABLE II. Average extra time required for JSCD with (
2TΔ (s)) and without (

1TΔ (s)) auxiliary bits, and plain ULP decoding time (T(s)) 
 

CS #1 CS #2 CS #3 
Image Loss  

rate T 
1TΔ  

2TΔ T 
1TΔ  

2TΔ T 
1TΔ  

2TΔ  

10% 0.16 108.45 22.64 0.13 9.87 1.63 0.06 0.17 0.17 
20% 0.18 164.71 38.47 0.13 23.29 4.81 0.06 0.52 0.51 LENA 
30% 0.17 170.89 13.24 0.09 9.34 1.87 0.07 0.55 0.55 
10% 0.07 143.55 21.27 0.09 0.27 0.26 0.06 0.43 0.43 
20% 0.09 239.78 45.72 0.10 0.82 0.82 0.19 0.72 0.72 BARBARA 
30% 0.18 508.36 80.02 0.12 108.80 11.77 0.08 1.39 1.39 
10% 0.21 192.48 26.94 0.18 62.61 5.79 0.10 1.15 1.15 
20% 0.22 0.51 0.51 0.16 213.38 17.40 0.14 1657.92 119.00 GOLD HILL 
30% 0.13 0.08 0.08 0.17 1.27 1.26 0.13 1098.41 113.21 
10% 0.10 203.81 36.91 0.08 4.61 0.74 0.16 0.15 0.15 
20% 0.12 0.07 0.07 0.09 157.65 32.49 0.17 1.5 0.43 BOAT 
30% 0.17 170.68 43.19 0.08 47.39 8.79 0.17 0.19 0.19 

 
JSCD still takes much more time than the regular ULP 
decoding. Note that all the executables were compiled and run 
in “Debug” mode, which is not optimized for speed. 
Therefore, the reported times are only a measure for 
comparison, and should not be considered as the best 
achievable times.  
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Predictive Decoding for Delay Reduction in 
Video Communication 

Yue-Meng Chen 

 
Abstract—Low delay is critically important for interactive 

video communication. This paper presents several predictive 
decoding techniques for end-to-end delay reduction. Video 
frames are predicted from past video data, and displayed before 
they arrive at the decoder. This problem is similar to the 
problem of whole-frame concealment, and we compare our 
methods to the state-of-the-art whole-frame concealment 
algorithms. As demonstrated in the paper, our methods yield 
better results because of incorporated motion segmentation and 
region-based motion prediction, with gains up to 2 dB compared 
to the existing whole-frame concealment algorithms on sequences 
with complex and high-intensity motion. Our simulations 
indicate that through predictive decoding it may be possible to 
reduce the perceived end-to-end communication delay by about 
100 ms while maintaining reasonable video quality. 
 

Index Terms—Motion segmentation, frame prediction, 
temporal prediction, end-to-end delay, vector median filter  
 

I. INTRODUCTION 
nteractive video applications, such as video phone and 
video conference, have become a feasible alternative to 

traditional telephony services. However, providing high-
quality interactive visual communications is still a challenging 
task due to the impairments introduced by the network.  In 
particular, end-to-end delays beyond 150 ms worsen the user 
experience [1]; delays above 400 ms make interactive 
communication virtually impossible [2]. The overall end-to-
end delay has several components, including acquisition, 
encoding, transmission delay (which includes propagation 
delay plus any processing within the network, such as 
routing), decoding, and rendering. Video acquisition and 
encoding typically take longer than audio acquisition and 
encoding, so in practice, audio is often purposefully delayed 
in order to maintain “lip synchronization” [1]. Hence, 
reducing the delay associated with video would be beneficial 
for the entire video communication system, because it would 
reduce the need to delay the associated audio information. 
  On the Internet, transmission delay alone may approach 150 
ms, as indicated in Table I. The table shows several Round 
Trip Times (RTTs) measured on the afternoon of Feb. 24, 
2007, by pinging various hosts from the Blenz Café in 
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Yaletown (Vancouver, BC), using the FatPort broadband 
wireless access network. In this scenario, one can expect 
about a 150 ms one-way transmission delay between 
Vancouver and Christchurch, New Zealand. The distance 
between Vancouver and Christchurch, across the Earth’s 
surface, is about 12000 kilometers. If we were to lay down a 
direct optical cable between these two cities and eliminate all 
processing, we would get a one-way delay of about 
12000/(2×108) = 60 ms. The difference between this (lowest 
possible) delay and the measured delay is indicative of the 
network topology and the processing inside the network. 

TABLE I - SEVERAL PING RTTS FROM VANCOUVER 
 

Host RTT (ms) 

ucla.edu 63 
mit.edu 113 

bbc.co.uk 187 
epfl.ch 231 

monash.edu.au 280 
canterbury.ac.nz 304 

 

  In this paper, we present several frame prediction techniques 
that can help reduce the perceived end-to-end video delay. 
Using the received video data, future frames are predicted and 
displayed before they arrive at the decoder, as illustrated in 
Fig. 1. We refer to this process as predictive decoding. This 
process inevitably reduces the quality of the displayed frames, 
especially when the motion is complex, but it also provides 
the user with the ability to trade-off quality for delay. Our 
results indicate that using these methods, it is possible to 
reduce the perceived end-to-end video delay by about 100 ms 
while maintaining reasonable video quality. 
  A future frame, which has not been received yet, may be 
thought of as a frame subject to 100% loss. In this sense, the 
goals of predictive decoding and whole-frame concealment 
[5]-[10] are the same. Differences arise in the constraints 
placed on the algorithms - for example, predictive decoding 
has to use strictly causal processing, while whole-whole frame 
concealment does not (although, in fact, most existing whole-
frame concealment algorithms rely chiefly on causal 
processing). We will therefore compare our proposed 
predictive decoding methods to a state-of-the-art whole-frame 
concealment method, and demonstrate substantial 
improvements, especially on sequences which contain 
complex and high-intensity motion. 

I 
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  Any frame prediction technique needs to deal with two 
fundamental challenges: (1) predicting future motion, and (2) 
synthesizing a frame based on the predicted future motion. 
  Challenge 1 (Motion prediction): Predicting motion 
trajectories of individual objects in the scene plays a crucial 
role in synthesizing future frames. Standard encoders (MPEG-
2/4, H.263, H264) estimate motion vectors by minimizing 
motion compensation errors [3], [4]. The frame is divided into 
small blocks, and a motion vector is assigned to each block 
(except for I-blocks). However, boundaries between the 
objects in the scene hardly ever match the boundaries between 
blocks, which makes it difficult to separate one moving object 
from another. In our proposed algorithm for frame prediction, 
we use motion segmentation to address this problem. This 
motion segmentation step is also the chief difference between 
our method and the existing methods for whole-frame 
concealment. Motion segmentation helps avoid the 
contamination of object’s predicted motion trajectory by 
another object’s motion. As a result, predicted frames exhibit 
blocking near object boundaries. In addition, motion 
segmentation allows us to direct the computational effort 
where it is most needed - near object boundaries – by using 
denser motion field representation there, and a coarser 
representation in the object’s interior. 
  Challenge 2 (Future frame synthesis): Using the predicted 
motion, a future frame can be synthesized by moving the 
objects from the last received frame along the predicted 
trajectories onto the future frame.. In this way, two kinds of 
spatial discontinuities might emerge: 

• When two or more objects land on the same part of the 
frame, a decision needs to be made about the pixel 
values to be written into this area of the frame. We call 
these areas overlapped areas, and describe how we 
process them in Section III-4. 

• Complementary to the case above, there are also areas 
of the frame that remain empty after the object move 
along their predicted trajectories. We call these areas 
empty areas, and describe how we process them in 
Section III-5. 

  This paper is an extension of our previous work in [11]. The 
proposed predictive decoding has been implemented in the 
popular XviD MPEG-4 video codec [12] and tested on a 
variety of sequences, ranging from low to high motion. The 

proposed prediction algorithm has a flexible application 
interface, and it can be readily adapted to other block based 
video coders, like H.263+ and H.264. 

Received frames Future frames

Frame to be displayed

 
 

Figure 1:  Perceived delay reduction by predictive decoding. 
  

  The material in the rest of this paper is organized as follows: 
In Section II we briefly review the previous work on whole-
frame error concealment. In Section III, we describe the 
proposed object based frame prediction algorithm. In Section 
IV, we present the experimental results and give the 
performance comparison between our frame prediction and a 
state-of-the-art whole-frame concealment algorithm. The 
conclusions are drawn in Section V. 

II.   PREVIOUS WORK ON WHOLE-FRAME CONCEALMENT 
  Strictly speaking, delay reduction through frame prediction 
does not seem to have been explored in the literature thus far. 
Yet, several algorithms have been proposed for whole-frame 
concealment recently [5 - 10], and these algorithms can be re-
configured to perform frame prediction as a strategy for 
reducing the end-to-end communication delay. This 
observation motivates us to compare our work against the 
previously proposed methods for whole-frame concealment, 
which can be broadly divided into two categories: pixel-based 
and block-based. Below we review a representative method 
from each category. 

Algorithm-A. Pixel based Whole-frame Concealment 
  Based on optical flow theory, a whole-frame concealment 
algorithm is proposed for video streaming applications in [5 - 
6]. Operating in the pixel domain, a constant velocity motion 
model is adopted to project the last correctly received frame 
onto a future frame by the following steps: 
Step-1 Constructing a forward motion vector (FMV) for each 

pixel in the last received frame (i.e., frame  t − 1) from the 
backward MVs and coding modes of frames from t – 2 to 
t – L – 1 with the constant velocity model, 

Step-2 Regularizing and smoothing the FMV field spatially of 
frame t − 1 using the two-dimensional median filter, 

Step-3 Reconstructing the missing frame by projecting pixels 
from frame t − 1 into the same pixels in the missing frame 
t in a 2x2 pattern, and averaging pixels if two pixels have 
landed on the same position (overlapped areas), 

Step-4 Scanning the missing pixels in frame t and estimating 
these missing pixels using the median of the neighboring 
available pixels (empty areas), 

Step-5 Filtering and downsampling the reconstructed frame 
by two in both the horizontal and vertical directions. 

  One obvious drawback of a pixel-based whole-frame 
concealment is its computational complexity. Applying a 
computationally-intensive algorithm to reduce the end-to-end 
delay is likely to be counter-productive, because it would 
place additional burden on the decoder performance during 
the real-time operation. Further, averaging pixels in 
overlapped areas and median filtering of pixels in empty areas 
may be able to mitigate to some extent the problems of empty 
and overlapped areas, but may also lead to objectionable 
artifacts in the parts of the frame with complex motion or 
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texture. 

Algorithm-B. Block based Whole-frame Concealment 
  A block-based frame concealment was proposed by 
Baccichet et. al. [7 – 8] based on the same optical flow 
concept, but offering lower complexity with a potential for 
real-time implementation. This algorithm consists of the 
following steps: 
Step-1  Determining the basis reference frame that presents a 

significant number of inter coded blocks (e.g., frame t − 
1), and constructing a FMV for each pixel in frame t − 1, 

Step-2  Projecting regularized pixel-wise FMV from frame t − 
1 into pixels in the missing frame t, 

Step-3  Computing the statistics (mean and variance of 
projected MVs) for each 16×16 MB and each 4×4 block 
in frame t, 

Step-4  Recovering MVs for 16×16 macroblocks and 4×4 
blocks in frame t based on the statistics information, 

Step-5  Reconstructing the final picture using motion 
compensation and loop filtering in H.264/AVC. 

  Compared to Algorithm-A, Algorithm-B reduces the 
computational complexity greatly. However, by averaging 
neighboring motion vectors, motion vector recovery in 
Algorithm-B may disrupt the spatio-temporal relationships 
among the motion vectors of neighboring blocks, and thus 
may worsen the blocking artifacts. Moreover, the algorithm 
requires extra effort on the encoder side to produce better 
motion vectors, and one additional step to estimate motion 
vectors for intra-coded blocks at the decoder [9]. 
  Since our work is targeted at real-time video communication, 
and our proposed algorithm is itself block-based, we 
compared our algorithm against Algorithm-B. To this end, we 

have implemented Algorithm-B in the XviD MPEG-4 codec 
[13], the same platform we used for testing our own 
algorithm. 

 

…...
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Figure 2:  Flow diagram of prediction module 

III. PROPOSED ALGORITHM 
  The approach we propose, object-based frame prediction 
(OBFP), is shown schematically in Fig. 2. The OBFP system 
consists of four main processing units controlled by a 
sequential frame prediction controller. First, the motion 
segmentation isolates all moving objects from the background 
on a block-by-block basis in frame t − 1 and identifies blocks 
that lie near the object boundaries on texture residual energy. 
Second, a variable-block-size MV prediction estimates the 
motion trajectory for blocks in frame t − 1. Third, a 
preliminary future frame is synthesized by moving all blocks 
from frame t − 1 to frame t along the estimated motion vector. 
Finally, the post processing unit mitigates the spatial 
discontinuities (empty and overlapped areas) of the 
preliminary future frame. 
  A crucial component of frame prediction is the accuracy of 
the predicted motion trajectories. By employing an object-
based MV prediction in the proposed algorithm, we are able to 
reduce the effects of motion vector noise and unnatural 
motion artifacts in the predicted frame, such as image 
background shaking and spatial discontinuities. Motion 
trajectory prediction based on moving objects offers a way to 
enforce motion field homogeneity within objects, and may 
compensate for MV inaccuracy caused by the standard motion 
estimation criteria of minimum prediction error at the encoder. 
  After generating a preliminary version of the future frame by 
moving the blocks of the last received frame along the 
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predicted motion trajectories, we apply several post 
processing steps to deal with empty and overlapped areas. In 
particular, linear interpolation and motion re-estimation via 
boundary matching are employed to process empty areas, 
while pixel averaging and the block selection are combined to 
process overlapped areas. In the following paragraphs we 
outline the details of our method. 

1) Motion Segmentation 
  Motion information is available in the compressed video bit 
stream in the form of motion vectors. By isolating the regions 
of consistent motion, we can determine where the moving 
objects are in the frame. Fig. 3 shows an example of 
segmenting a moving object out of a frame based on motion 
consistency. Note that, since MVs are block-based, object 
boundary will also follow block boundaries 
  References [16] and [17] have described methods for 
achieving robust motion segmentation with adaptive k-means 
clustering. For the purpose of identifying moving objects, we 
develop a block-based motion segmentation method as a 
combination of K-means clustering [18] and motion 
consistency verification [19]. The flow diagram of our motion 
segmentation is shown in Fig. 4. 
  Motion information associated with each block (MV for P-
blocks, zero MV for skip-blocks, no MV for I-blocks) is first 
extracted from the encoded bit stream. The original MVs are 
mapped to the minimum block size supported by the particular 
coder, for example 8×8 blocks for H263 and MPEG4, and 4×4 
blocks for H264. This is done simply by splitting the larger 
blocks to the smallest supported blocks and assigning to each 
of them the MV of the parent block. The neighboring MVs are 
then grouped into clusters iteratively using the k-means 
clustering algorithm with the help of the motion consistency 
model. The segmentation is carried out as the follows: 
Step-1 The motion vector statistical information are computed 

first to estimate the overall motion level in the clustering 
threshold estimator 
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  Where N denotes the number of inter coded blocks in the 
frame to be segmented. Based on the variance of MVs, the 
corresponding region growing step size is determined as the 
value of the standard deviation , and its maximum value 

is limited to 8. The threshold of minimum moving object 
distance is also determined as the same value of , and 
limited to a maximum value of 4. These two parameters are 
used in the region growing unit and the region merger unit, 
respectively. 
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Figure 4:  Motion segmentation. 

 

 
Figure 3:  Block-based motion segmentation. 

  

Step-2 With the seed pattern [19] shown in Fig. 5, a group of 
P-blocks with minimum MV distortion is found as the 
starting point for region growing. The moving objects are 
identified by (3). 
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  Where  is denoted as the overall MV distortion of the 

seed, and 

seedD

jiMV ,  denotes the MVs of blocks in a seed 
candidate (Right, Left, Centre, Upper, Bottom). We go 
through the entire frame to find a seed with minimum MV 
distortion. After we identify a new seed, neighboring blocks in 
horizontal and vertical directions, shown in Fig.6, are first 
tested for clustering into this new moving region. 
Step-3 With the threshold of MV distortion range from step 1) 

and the seed from step 2), a coherent motion region is 
grown gradually by clustering bordering blocks into the 
region if their motion is sufficiently similar to the 
prevalent motion inside the region. A motion consistency 
model is established based on the minimum distortion 
criterion during this region growing procedure.  We start 
with calculating the region growing threshold. 

offcentroidTH DMVMVED +−= }{ int                          (4) 
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  Where centroidMV  and  intMV  are, respectively, the 
centroid MV of the region and MVs of all internal blocks 
within the region, and indicates the region growing step 

size that is estimated in the Clustering Threshold Estimator in 
the step 1. Once a new seed-block is found, the centroid MV, 

offD

centroidMV , is initialized, and the region growing threshold 
 is calculated as in (4).  indicates the average 

distance between the MVs in the region and the centroid MV 
of the region, increased by the offset . 

THD THD

offD
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  The region growing process checks whether an ungrouped 
block which borders the existing region has sufficiently 
similar motion to the prevalent motion inside the region, by 
checking if the following condition is satisfied. 

nTHextncentroidni DMVMVD ,,, ≤−=                            (6) 

  Where  ntroid ,  denotes the motion vector centroid of 

region n, 

cenMV

extMV  es the motion vector of the block that 
is being tested, nH ,  denotes the growing threshold of 

region n , and niD ,  is the distance between 

denot
 D

motion vector 

of that 

 our estimate of the 

Step

 vector centroid, the region growing threshold, and 

Step

boring region to weed out potential 

Step

oving object distance, which is 

Step dian 

ifferent 

ck-size motion 
section. 

locks, we cope with them in two different ways as 

ation yields better results in both PSNR and visual 

al with all blocks located on the 

posi n (7), where 
 denotes the prediction residual of one pixel. 

T

centroid of the region and the MV of the block. 
  For a particular ungrouped block, if there is more than one 
bordering region for which (6) is satisfied, we pick the 
minimum niD ,  and group the block into that region 

accordingly. After the block is assigned to one of its 
neighbouring regions, the motion vector centroid 
region gets updated as mean MV of the cluster in (5). 
  This step will be executed repetitively until no more blocks 
can be grouped into the region, and
location of a moving object is formed. 

-4 Update all parameters of the motion consistency model 
for all existing coherent motion regions, such as the 
motion
so on. 
-5 Repeat Step 2) to Step 4) until no further seed can be 
found. Finally, all remaining ungrouped blocks are 
grouped into its neigh
false motion vectors. 
-6 Calculate the distance between centroid MVs of 
adjacent regions, and merge two adjacent regions if the 
distance between their centroid MVs is less than the 
threshold of minimum m
determined in the step 1. 
-7 Perform region MV smoothing via vector me
filtering [20] to reduce MV noise inside each region. 

  Fig. 7 shows the results of block-based motion segmentation 
with sequences Flower Garden, Tennis, and Football, where 
the original video frame is also displayed to give a reference 
on what the exact moving objects look like. Frame #2 from 
Flower Garden, Frame #20 from Tennis, and Frame #35 from 

Football are used for this example. To display the result of 
motion segmentation, moving regions are filled with d
luminance values to distinguish them from each other. 
  From these results, we can see that the proposed motion 
segmentation algorithm nicely segments the moving objects at 
a block precision level. However, it is not hard to observe that 
the edges of each moving object cannot exactly match its 
original boundary. The jagged object boundaries are caused 
by the block-based motion estimation at the encoder, 
therefore, it is necessary to come up with a method to enhance 
segmentation performance and subsequent MV prediction 
near the edges. Our solution is the variable-blo
prediction, which is described in next 

2) Object-based Motion Prediction 
  In each coded frame, the MV associated with a block points 
to the most similar block in the reference frame, and can be 
interpreted as the motion trajectory for that block. We assume 
the object will keep moving in a similar direction, thus a 
crucial step towards synthesizing a future frame is to predict 
the motion for each block between the last decoded frame and 
the future frame. Since motion segmentation unit segments 
motion objects from the background area and identifies 
boundary b
following. 
  Objects and Background: Since both the objects and the 
background area are a collection of unified blocks (8×8 for the 
case of MPEG-4), we can predict forward motion vector for 
either each block or entire object and background area, and 
median filtering is a good candidate if we go with individual 
block based motion prediction. In our experiment, we 
implement both methods, and single motion vector 
represent
quality. 
  Boundary blocks: A variable-block-size motion prediction 
method is employed to de
object boundary [15][21]. 
  The blocks (8×8) are classified prior to variable-block-size 
motion prediction. Within each region, each block is classified 
as either an internal block or a boundary block in terms of its 

tion and the energy of the prediction residual i
jip ,
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(a) 

(d) 

(b) (c) 

(e) (f) 
 

Figure 7:  ( a), (b), and (c) the original image from video sequences Garden, Tennis, and Football, left to right. (d), (e), and (f) the corresponding result of 
block-based motion segmentation. 
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  A block is classified as a boundary block if it is located on 
the boundary between two motion regions and resE  is higher 
than a pre-defined th
on our experiments (which indicates an average prediction 
error energy of 4 per pixel). Otherwise, this block is classified 
as an internal block. 
  For the block classified as a boundary block, assigning a 
single MV may be inappropriate since a more complex motion 
structure is likely involved [1]. For the case of MPEG-4, we 
split the 8×8 block into smaller blocks, like 4×4 sub-blocks, 
and predict MV for each of them to mitigate the risk of 
predicting a wrong single MV. Fig. 8 shows two scenarios 
where blocks near the boundaries of moving regions are split 
into 4×4 sub-blocks, and an MV is assigned to each sub-block 

d on which region it is closest to. 
e way to assign MVs for sub-blocks is as the follows: 

a) If a 4×4 sub-block is surrounded by blocks from the same 
region, then the centroid MV of that region is assigned to 
the 4×4 sub-block. 
If a 4×4 sub-block is surrounded by multiple regions, then 
the MV distance is first calculated bet
a arent 8×8 block (before splitting). The centroid 
M e region with minimum distance to the parent 
MV is assigned to the 4×4 sub-block. 

origMV  be the MV of the 8×8 parent block near the 

boundary, and let S  be a set of N motion vectors, 

},...,,{ 2,1, cecencen MVMVMVS = hose elements are 
the centroid

,Nn , w
 MVs of the surrounding regions. Equation (8) is 

used to pick the most likely MV, k,4 , for the k-th 4×4 xMV 4

sub-block 

ori
i

                          (8) 

3) Preliminary Frame Synthesis 
  Once the segmentation is complete and MVs are assigned to 
each block, we move all objects and the background of the last 
received frame onto a future frame along the estimated MVs. 
In this way, we synthesize a preliminary version of the future 
frame. At this point, some areas of the synthesized frame may 
have multiple blocks landing on them – we call these areas 
overlapped areas. Other areas may remain empty, if no block 
lands on them – we call these empty areas. We need to decide 
which pixel values will be written into overlapped and em

icenkx MVMVMV −= ,,44 minarg

pty 
o post-processing 

k

(x, y) in the overlapped area is assigned to be the average of 

areas. These decisions are made in the tw
steps described below. 

4)  Post-processing of Overlapped Areas 
  We distinguish two types of overlapped areas: “thin” areas 
are those whose width or height does not exceed 3 pixels, 
while “thick” areas are those whose both with and height 
exceed 3 pixels. Different post-processing is applied to each 
type of overlapped area. 
  For thin areas, we apply a simple averaging of all candidate 
pixel values. Let there be N blocks overlapping a certain area 
and let OV  denote the k-th block. The pixel value at location 
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A) 4×4 blocks, each of 
which 

B) 4×4 blocks surrounded 
by multiple motion regions 

 
Figure 8:  The motion vector prediction for 4×4 sub-blocks. 
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Figure 10:  Filling thin empty areas. 

corresponding pixel values in each of the overlapping blocks. 
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t and width exceed 3 pixels. One 

ate blocks, and the boundary pixels of the surrounding 

ixels from this block are 
used to fill the thick overlapped area. 

k kN 1
  Once all thin overlapped areas are processed, we are left with 
thick overlapped whose heigh
such area is shown in Fig. 9. 
  These areas will be filled by pixel values from the block that 
fits the best into the surrounding area. To decide which block 
fits the best, we employ boundary matching by computing the 
mean square difference between the boundary pixels of 
candid
area. 
  Let OVk(x, y) be the pixel at location (x, y) in the k-th 
overlapping block. Let B be the set of boundary pixels of the 
overlapped area, and for each (x, y) ∈ B, let n(x, y) be the 
value of the neighboring pixel across the boundary, in the 
surrounding area. The best matching block OVbest is the one 
whose square difference from the surrounding area along the 
boundary is the smallest, as in (10). P

∑
∈

−=
Byx

yxnyxkOV
kbestOV

),(

2
),(),(minarg             (10) 

fferent post-processing is applied to each 

x2 = x. The pixel in the empty 
area is linearly interpolated as 

5)  Post-processing of Empty Areas 
  In addition to overlapped areas, we also find empty areas in 
the synthesized frame. These are the areas where no block has 
landed. A similar situation arises in error concealment, where 
a block of size 8×8 or 16×16 may be missing due to packet 
loss. However, in our case, empty areas may have different 

shapes and sizes. Again, we distinguish “thin” empty areas 
(those whose width or height does not exceed 3 pixels), from 
“thick” empty areas (those whose both height and width 
exceed 3 pixels). Di

 
 

Figure 11:  Filling thick empty areas. 
 

Figure 9:  Boundary matching for overlapped areas. 

type of empty area. 
  Thin empty areas are filled using linear spatial interpolation 
[22]. An illustration of a thin empty area whose height is 3 
pixels is shown in Fig. 10. Let P(x, y) be the pixel value we 
wish to determine in an empty area, and let P1(x1, y1) and 
P2(x2, y2) be two of its nearest neighbors in the surrounding 
area. In the situation depicted in Fig. 10, P1 and P2 are above 
and below P, so in this case x1 = 

),,(1),(1),( 222111 HH ⎠⎝⎠⎝
  where h

21 yxPhyxPhyxP ⎟
⎞

⎜
⎛ −+⎟

⎞
⎜
⎛ −=       (11) 

stances from P to P  and P , 

g thick empty areas based on 

and use them for boundary 

1 and h2 are the di 1 2
respectively, and h1 + h2 = H. 
  Simple linear interpolation works reasonably well for thin 
empty areas, but tends to produce excessive blurring when 
applied to thick empty areas. Therefore, we adopt a more 
sophisticated method for fillin
boundary matching [23], [24]. 
  An example of a thick empty area is shown in Fig. 11. First, 
we divide each thick empty area into rectangular regions, 
which we call empty rectangles (ERs), and label them ER1, 
ER2, …, ERN. We fill ERs in sequence, starting with ER1 and 
ending with ERN. For each ER we extract the boundary pixels 
from the surrounding area 
matching in previous frames. 



ENSC 803 COURSE TRANSACTIONS 
 

8

  Let BB

 (dx, 
dy) from its position in the current frame, where 

n be the set of boundary pixel coordinates for ERn. 
Denote the current frame as P, and previous K frames as P1, 
P2, …, PK. We will search in each of the previous K frames 
over an area of size X × Y pixels for the best matching 
boundary. This boundary is found in frame Pk, offset by

.),(),(

minminarg),,(

2

),(

2/||,2/||    ,...,2,1

∑
∈

≤≤=

++−

=
YdyXdxKk

dyydxxPyxP

dydxk
                  (12) 

pty rectangles. 

ng thick empty 
ig. 12. 

will be a big consideration to the trade-
off for visual quality 

encoded at 128 kbps, and CIF/SIF 

ith different complexities, and 

st other two 

t 

3 is our proposed object-based frame prediction 

100 ms at 30 fps), where 3 frames need to 

nByx
k

  Once (11) is solved and the best matching boundary is found, 
we copy the corresponding rectangle from Pk to fill ERn. At 
this point, ERn is removed from the list of empty rectangles, 
and we continue with ERn+1. The pixels of ERn may now 
become boundary pixels for the remaining em
The procedure is illustrated in Fig. 11. 
  An example of empty area filling is shown in Fig. 12. The 
figure shows a frame passing through the empty area post-
processing block of Fig. 2. The top left image shows the frame 
produced by temporal prediction and overlapped area 
processing. Thin vertical empty areas are filled first (top 
right), followed by thin horizontal empty areas (bottom left). 
The final predicted frame, obtained after filli
areas, is shown in the bottom right of F

6)  Frame Prediction in H.264/AVC 
  Although the proposed object-based frame prediction 
algorithm is implemented in the XviD MPEG-4 video codec 
[13] for performance evaluation, it can be easily adapted to 
H.264/AVC [14] with similar module interface. We may 
expect even better prediction performance since H.264/AVC 
uses R-D optimal motion estimation with block size lower to 
4×4 [25], [26], thus motion segmentation may be able to 
extract moving objects with more accurate boundaries. 
Variable-block-size motion prediction is still applicable to the 
boundary blocks by splitting them further to smaller blocks, 

which is very close to pixel based segmentation resolution, 
while the complexity 

 
Figure 12: Illustration of empty area post-processing: intermediate frame 
after post-processing of overlapped areas (top left); after filling thin vertical 
empty areas (top right); after filling thin horizontal empty areas (bottom 
left); final frame after filling thick empty areas (bottom right). 

TABLE II: TEST SEQUENCES 
 

Sequence Resolution 

Carphone QCIF 
Flower Garden CIF 

Foreman QCIF 
Singer CIF 

Mother & Daughter QCIF 
Miss America QCIF 

 

IV. RESULTS AND DISCUSSION 
  We have implemented the object-based frame prediction 
algorithm in the Xvid MPEG-4 decoder [13], and tested its 
performance on a number of sequences with varying motion 
content.  We used six sequences in our experiments, each at 
three different frame rates: 30, 15, 7.5 frames per second (fps). 
These sequences are listed in Table-2. Up to 200 frames of 
each sequence were encoded using the IPPP… GOP structure. 
QCIF sequences were 
sequences at 512 kbps. 
  On the decoder side, we tested prediction of up to 3 frames 
ahead. Depending on the frame rate (30 fps, 15 fps, or 7.5 fps) 
of the sequence, the perceived delay reduction is up to 100 
ms, 200 ms and 400 ms when predicting three frames ahead of 
time. Using different combinations of frame prediction 
building blocks from the previous section, we constructed 
three prediction methods w
compared their performance. 
  Method-1 is the simplest motion prediction model for frame 
prediction.  The ZERO MV is assigned to all blocks so that 
there is no temporal movement at all regardless of the number 
of frames that need to be synthesized. In other words, the 
latest reconstructed frame is taken directly as the predicted 
frame for playout, thus it has no achievement on delay 
reduction itself, but it works as the basis again
methods in terms of the prediction performance. 
  Method-2 applies similar block-based whole-frame 
concealment technique (Algorithm-2 from section-II) [7][8] 
but modify it to suit multiple frames concealment. Moreover, 
we use vector median filter to recover MV for 8×8 blocks in 
the future frame, since the references of Algorithm-2 do no
detail the calculation of threshold values for MVs prediction. 
  Method-
method. 
  We leave out pixel-based whole frame concealment 
technique (Algorithm-1 from section-II) [5][6] because it is 
not practical in real-time applications. The complexity 
becomes unacceptable especially when high-delay reduction is 
required (more than 
be predicted ahead. 
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1)  The Performance vs. Frame Prediction Depth 
  Fig. 13 shows how video quality measured by PSNR in dB 
depends on how far ahead we predict. The results show the 
frame prediction performance for different motion level 
sequences. All these simulations were done with 30 fps 
sequences. 
  From the PSNR plots, we can observe the followings. First, 
PSNR is decreasing as the prediction goes further. The quality 
decay varies according to the motion activity level and texture 
pattern in the sequence. Garden has the most complicated 
texture pattern and its PSNR (method-3) drops up to 3 dB 
when predicting one frame ahead of time, while the PSNR of 
method-1 drops 10 dB after predicting the first frame. 
Furthermore, on sequences with relatively high motion levels, 
like Garden, Singer, Carphone, and Foreman, the method-3, 
proposed object-based frame prediction, outperforms both 
method-1 and method-2. For sequences with relatively low 
motion, like Miss America and Mother & Daughter, the 
sophisticated frame prediction method does not provide as 
much improvement as for high-motion sequences. On these 
sequences, even simple methods do reasonably well. The 
table-3 summarizes the PSNR gain over (method-2/method-3 
vs. method-1) with the prediction depth at 1, 2 and 3 frames 
ahead. 
Fig. 14 gives a visual quality comparison between method-2 
and method-3 for the delay reduction scenarios at 33ms, 
66ms, and 99ms (Sequence Foreman, 30 fps). Three predicted 
frames, #98, #99 and #100 are predicted by method-2 and 
method-3 based on received frames up to Frame #97 

respectively, and original three frames are shown on the top 
row for comparison. 
  We can observe from Fig. 15 that the predicted frame quality 
deteriorates as the prediction depth increases for both 
methods. As expected, the further ahead we predict, the lower 
the quality of the predicted frames. However, the method-3 is 

s are 

ure 15 illustrates the relationship between the frame 

 other words, the cost of quality loss to reduce 

visibly better than the method-2 since the block artefact
mitigated significantly, especially for the background area, 
where all blocks have consistent motions. 

2)  The Frame Prediction Performance vs. Frame Rate 
  The frame rate is another important factor which links 
prediction depth and delay reduction. Figure 15 shows how 
the frame prediction performs at different frame rates. During 
the experiments, each test sequence is down-sampled from its 
native frame rate of 30 fps down to 15 fps and 7.5 fps. 
Prediction depth goes up to 3 frames ahead for each frame 
rate. Fig
prediction performance and frame rate for high motion 
sequences, medium motion and low motion sequences, top to 
bottom. 
  The simulation results are consistent with our expectations. 
Prediction is better at high frame rates. We can also observe 
that the quality (PSNR) of predicted frames is approximately 
determined by perceived delay reduction. For example, 
predicting one frame ahead with 15 fps Foreman gives us 
similar quality to predicting two frames ahead with 30 fps 
Foreman. In
perceived end-to-end delay for high frame rate source is 
similar to the quality loss incurred with its low frame rate 
counterpart. 
    This simulation shows that the frame prediction 
performance is mainly related to the amount of delay we want 
to reduce. However, video source with high frame rate offers 
us more flexibility in frame prediction than the low frame rate 

 

A) 4×4 blocks, each of 
which 

B) 4×4 blocks surrounded 
by multiple motion regions 

 
Figure 8:  The motion vector prediction for 4×4 sub-blocks. 

 

A) 4×4 blocks, each of 
which 

B) 4×4 blocks surrounded 
by multiple motion regions 

 
Figure 8:  The motion vector prediction for 4×4 sub-blocks. 

TABLE III: METHOD-2 AND METHOD-3 PSNR GAIN OVER METHOD-1 
 

PSNR Gain Over 
Method-1 (dB) 

Sequence Predicted 
Frames Method-

2 
Method-

3 
1 6.88 7.35 
2 4.52 7.02 Garden 
3 3.49 5.5 
1 2.33 2.47 
2 1.64 2.18 Carphone 
3 0.91 1.8 
1 2.28 2.73 
2 0.94 2.81 Foreman 
3 0.28 1.63 
1 1.56 1.94 
2 1.33 2.81 Singer 
3 1.1 1.84 
1 -0.19 0.18 
2 0.78 1.52 Miss 

America 3 0.53 1.01 
1 -0.27 -0.09 
2 -0.52 0.02 Mother & 

Daughter 3 -0.48 0.1 
 

 
Figure 13:  Prediction performance in PSNR (dB). 
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source. For example, if the user can accept the video quality at 
150 ms delay reduction, then with 30 fps video 
communication, we will hav

(a)                                      (b)                                    (c) 

 
(d)                                      (e)                                    (f) 

 
(g)                                      (h)                                    (i) 

 
Figure 14:  Visual comparison for frame prediction assessment.  [Top] is the 
original frame #99, #100, #101 without prediction, [Middle]: frames 

di t d b M th d 2 [B tt ] f di t d b M th d 3

e options for delay reduction at 
rce 
ion 

at the encoder side, and how different coding 

the density of motion vector field is to force 

otion levels: 
Fo m
Two c sed video files are used for frame prediction 
te g

• coded video quality (PSNR) with different bit 

t on low-motion sequences, 

e correspond to the case 

 
Figure 15: Prediction performance VS. Frame Rate. 

33ms, 67ms, 100ms, and 133ms, while for 15 fps video sou
we only have options 67ms and 133 ms, and only one opt

 ms) for (133 7.5 fps source. 

3)  The Frame Prediction Performance vs. Motion Field 
Density 

  Motion vector accuracy and density is another important 
factor affecting the overall frame prediction performance. 
What we have discussed so far only concerns the decoder; the 
encoder operates independently without any knowledge that 
prediction will be carried out at the decoder. In this section, 
we carry out experiments to investigate the impact of motion 
estimation 
techniques affect the prediction system. In particular, we 
investigate the effects of motion field density on prediction 
accuracy. 
  MPEG-4 supports motion vectors based on 16×16 or 8×8 
blocks in terms of the energy of the prediction residual. One 
way to increase 
four 8×8 blocks for inter-coding for the entire sequence, but 
there is a bit rate sacrifice due to the cost of encoding extra 
motion vectors. 
  The purpose of fixing the 8×8 coding mode is to increase the 
density of the motion vector field, which may benefit motion 
segmentation as well as subsequent motion prediction. 
However, in addition to increasing the bit rate, there is another 
risk associated with this. Smaller blocks may lead to more 
noise in the motion vectors. To identify how much 
improvement we can get in frame prediction in terms of 
motion field density and how much penalty we might suffer 
from video quality in terms of bit rate, we carried out the 

experiments on four sequences with different m

TABLE IV: BIT RATES NEEDED TO MAINTAIN THE SAME VIDEO QUALITY 
 

Sequence PSNR 
(dB) 

Bit-Rate  
(Adaptive 16×16 

mode) 

Bit-Rate   
(fixed 8×8 

mode) 
Foreman 31.5 70 kbps 144 kbps 
Carphone 33.7 65 kbps 144 kbps 
Mother & 
Daughter 32.4 20 kbps 149 kbps 

Miss America 39.6 55 kbps 134 kbps 
 

re an, Carphone, Miss America, and Mother & Daughter. 
ompres

stin  at the decoder separately. 
Fixed en
rates. 

• Different encoded video qualities (PSNR) at the same 
bit rate. 

  Table 4 shows the bit rate difference when we use the two 
different coding modes to achieve the same quality (PSNR), 
and we can observe that the adaptive 16×16 mode is more 
efficient that the fixed 8×8 mode. Efficiency difference 
between these two modes is highes
where lack of motion can be easily exploited by the large 
block size. The difference in efficiency reduces as the motion 
intensity and complexity increase. 
  Fig. 16 illustrates the frame prediction performance in terms 
of different motion field densities for four different video 
sequences. The plots on the right sid
where the encoded PSNR is the same for the two modes, and 
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the plots on the left side correspond to the case where the bit 
rates of the two modes are the same. 
  We can observe that increased motion vector density does 
not give too much improvement on the performance of frame 
prediction, especially when encoded bit streams have the same 
PSNR. The main reason is that increased motion density 

motion estimation 
field, but has the benefit of 

n module, 

deoconferencing), the current 
frame prediction module would need further optimization to 
reserve enoug solutions like 

the 
vide
a)  motion vector prediction, 

ion homogeneity to 
improve motion prediction, 

 

brings higher risk of false motion vectors in homogeneous 
areas, and motion accuracy turns out to be more important 
than motion field density in frame prediction. 
  By studying the impact of motion field density on frame 
prediction, we have come to the conclusion that increasing the 
motion field density by forcing small block size in motion 
estimation is not beneficial for predictive decoding. Using the 
default adaptive 16×16 block-based 
produces less dense motion 
improved coding efficiency and higher motion vector 
accuracy, which is crucial for prediction. 

4)  The Complexity Analysis 
  The complexity has been a big practical consideration in 
frame prediction system. We analyze the computation 
complexity by conducting simulations on a desktop PC with 
Intel Pentium CPU 3.0 GHz and 1.99 GB of RAM for the 
proposed frame prediction algorithm (method-3), and table 5 
gives us a preliminary knowledge of algorithm complexity 
with an un-optimized version of the frame predictio
where the overall time consumption is listed for standard 
decoder and multiple frame prediction. Table 6 shows the 
computation dissipation in current implementation. 
  To achieve real-time video decoder with frame rate at 30 fps, 
current frame prediction implementation can support the video 

resolution up to CIF, while predicting three frames ahead of 
time, and reducing delay up to 100 ms. For lower resolution 
such as QCIF, the overall time consumption, including frame 
reconstruction and three-frame prediction, is less than 10 ms, 
thus it meets the requirement of running in real time. 
However, if a real-time encoder needs to run on the same 
system (as in typical PC-based vi

h MIPS, especially for higher re
CIF and longer delay reduction. 

V. DISCUSSION AND CONCLUSION 
  In this work, we addressed the issue of delay in video 
communications, and proposed predictive decoding to reduce 
the delay. The main idea behind our delay reduction method is 
to incorporate a frame prediction module into a standard video 
decoder, predict the upcoming video frames from the available 
video data, and display them before they arrive at the receiver. 
  By using this “predictive decoding,” it is possible to reduce 

perceived end-to-end delay at the expense of displayed 
o quality. The key steps in this decoding scheme include:  
Motion segmentation-based
which considers both prediction residuals from the last 
received frame and motion reg

b) Temporal prediction is used to synthesize future frames 
using the predicted motion vectors, 

 
Figure 16: Prediction performance vs. Motion density. 

TABLE V: BIT RATES NEEDED TO MAINTAIN THE SAME VIDEO QUALITY 
 

Time Consumption -  ms 
Video Clip Format 

STD. 
Dec 

1 
ahead 

2 
ahead 

3 
ahead 

Foreman QCIF 0.26 1.93 4.74 6.72 

Carphone QCIF 0.16 1.92 3.69 6.41 

Singer CIF 1.38 6.6 13.9 21.5 

Mother & 
Daughter QCIF 0.42 1.35 3.28 4.69 

Flower 
Garden CIF 2.87 8.84 17.95 27.3 

Miss 
America QCIF 0.61 1.87 3.33 5.42 

 

TABLE VI: THE MIPS DISSIPATION. 
 

Processing Unit MIPS 
percentage 

Motion Segmentation 40% 
MV. Pred 15% 

Frame Synthesis 29% 
Post Pro - Overlapped 5% 

Post Pro - Empty 4% 
Others 7% 
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c) A combination of bi-linear interpolation and boundary 
matching is used as a post-processing step to deal with 
overlapped and empty areas. 

  The benefits we may get from frame prediction depend on 
the complexity of the video. For scenes involving complex 
motion, the number of frames which can be predicted with 
acceptable quality is ve wever, for scenes with 
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ABSTRACT 
Interactive computer systems have been incorporated in the 
performing arts for the past two decades. During this time, 
several approaches to the performer-technology relationship 
have been developed. However, resent increases in agency 
and autonomy designed into performance systems challenges 
traditional view on Human-computer relationships. This 
study presents the foundation for an interaction framework, 
by drawing on theories from cognitive science, performing 
arts and philosophy. These theories argue that the embodied 
perception of the intention of others provides the basis for 
human interaction. Therefore, the human-computer 
interaction model presented focuses on the performer ability 
to perceive the intentions of the system 
 
Keywords 
Interactive performance, Perception, embodiment, HCI 
 
1. INTRODUCTION 
Interactive technologies have been use in performance for the 
past two decades; but in resent years, explorations into the 
use of these devices have expanded. Music, dance, and 
theatre have individually developed models for incorporating 
and interacting with media and digital systems onstage. The 
increase in availability and usability of interactive 
technologies has allowed practitioners to become more 
comfortable and adept at incorporating these technologies 
into productions, there by encouraging an exploration into 
the use of these devices and the complexity of the performer-
system interaction. Interactive performance is pushing the 
explorations in human-computer interaction from pure 
technical questions to philosophical questions. Theorist and 
director David Saltz remarked in his essay Live Media: 
Interactive Technology and Theatre  “The holy grail for me 
as a director is to produce a dramatic relationship between 
performer and media, to grant media real agency, casting 
them in a role on par with the live performers” [15]. 
Computer systems are being given increasing autonomy, our 
relationships with these systems are increasing in 
complexity, and our artistic questions are challenging the 
divide between performer and system. This essay focuses on 
the relationship and interaction between performers and 
digital systems in order to develop a framework for 
interdisciplinary interactive performance.  

 
The proposed framework expands on traditional approaches 
to interactive performance by re-conceptualizing the media 
object, shifting it from a virtual object to a perceived body 
within the physical space. The re-conceptualization of the 
media object is guided by a theory of embodied knowledge, 
which illustrates how perception acts as the key to the 
performer’s knowledge about the environment. The 
embodiment of the media object through the human process 
of perception constructs the media object as a lived 
experience equal to other physical experiences. This 
perceptual approach to interaction is supported by resent 
research in cognitive science and theories informed by 
performance practice. Because this experience is rooted in 
the performer, I refer to the framework that I am developing 
out of these theories the Performer model. The Performer 
model for interaction places the quality of the Human-
Computer relationship on the ability of the performer to 
perceive the intentions of the system. The intent of this essay 
is to present how the human ability to perception the 
intention of others acts as the foundation for this framework.  
 
1.1 Taxonomy of relationship 
With in the disciplines of dance, music and theatre, several 
approaches for incorporating interactive systems in stage 
performance have been developed. Each approach affords a 
different function to the technology and places it in a 
different relationship with the performer. Saltz has presented 
a taxonomy of these performer-technology relationships [15]. 
His list of relationships consists of:  
 1) Virtual Scenery: - media that provides a static or  
  animated backdrop to the performer’s actions.  
 2) Interactive Costumes: - media embedded in the  
  costuming to provide an expressive quality that is 
  responsive to other performance elements.  
 3) Alternate Perspective: - media used to present an  
  alternative physical perspective of actions seen on 
  stage. 
 4) Subjective Perspective: - media used to present the  
  internal thoughts of a character on stage. 
 5) Illustration: - media used to illustrate a performer’s  
  words. 
 6) Commentary: - media providing supplementary  
  commentary on the stage action in the moment of 
  the action. 



 

 7) Diegetic Media: - media within the world of the  
  performance, acknowledged by the performers as 
  media. 
 8) Affective Media: - media not in the world of the  
  performers, provided to guide the emotions of the 
  audience. 
 9) Synesthesia: - media reflecting the state of the  
  performance in a second sensory modality.  
 10) Instrumental Media: - media acting as an extension 
  of the performer with an arbitrary, though  
  consistent, relation between the performer’s actions 
  and the system’s response. 
 11) Virtual Puppetry: - media used to present a  
  performer’s double or alter ego. The performer  
  gives their voice to the puppet. 
 12) Dramatic Media: - media objects functioning as  
  characters within the drama of the performance 
 
This extensive taxonomy, largely informed through the 
perspective of theatrical function, provides an overview of 
the relationships between the performer and the media. The 
organization places media objects supplying context, media 
supplying uninvolved commentary, media translating 
performed gestures, and media incorporated as agents within 
the performance on a continuum of Performer-Technology 
relationship. The discussion around each category focus on 
the role the media serves, and the affordences brought to the 
role by the media.  
 
However, as much as Saltz has illustrated the range of 
system-performer relationships on stage, his taxonomy is 
hampered by the difference between relationship and 
interaction. In explaining the concept of Dramatic Media, a 
media functioning as a character, Saltz uses the example of a 
live performer playing alongside a video of a performer, 
describing both as characters in the scene. What Saltz is 
presenting is a dramaturgical relationship, not an interaction. 
Both characters have agency in the performance only from 
the perspective of the Director and author. Their status as 
equal characters is constructed by focusing on their abstract 
agency in the composed structure. The description of their 
relationship fails to address the presence or absence of any 
interaction enacted in the moment.  
 
1.2 Taxonomy of interaction 
An alternative approach to exploring the performer-
technology relationships is to consider the mode of 
interaction afforded by the system. Robert Rowe proposed 
the distinction between an instrument paradigm and a player 
paradigm as one axis along which we could place different 
interactive systems [9]. In this taxonomy, systems based on 
the Instrument paradigm are often more concerned with 
timbre generation, while the systems modeled on a player 
paradigm requires the use of some meta-compositional 
generation method to produce musical output [14].  
 
By focusing on the process used to generate the system’s 
response, Rowe draws a distinction between two 
fundamental modes of interaction: direct and indirect. The 
direct control associated with the instrument paradigm 
implies an interaction based on one-to-one mapping between 
the performer’s action and the system’s response, often 

focusing on control of musical parameters such as on/off, 
pitch, and volume. In contrast, the indirect control associated 
with the player paradigm implies an interaction based on 
sensors and general Performative gestures, analyzed and 
mapped to one or more compositional parameters [19]. These 
two paradigms afford the performer and the system very 
different levels of control, servitude and freedom. The 
performer-system relationship becomes defined by the 
analysis and mapping strategies being employed, which are 
consequently understood as key structural qualities of the 
system and the performance [13] [19]. A dynamic quality to 
the interaction may even be constructed by change the 
mapping and analysis strategies in a set manor over time [2], 
adding a further dimension of complexity to the relationship. 
However, the link between mapping strategies and control 
based paradigms limits the usefulness of the instrument-
player taxonomy to fully contend with issues of agency. 
Rowe’s use of the term “player” and Saltz’s use of the term 
“character” implies that agency is plays a role in the 
discussion; however, neither Saltz nor Rowe address, in these 
taxonomies, how the interaction or relationship with such a 
system might be negotiated.  
 
1.3 Models for improvised interaction 
The agency of the media performer is a common issue in 
research with computer systems for musical improvisation. 
Interaction with these systems is often facilitated by 
elaborate algorithms for analyzing the sonic gestures of the 
performer [9] [16], which have been modeled on the process 
assumed to be undertaken by the performer. This model has 
some validity and has produced some very accomplished 
systems, and seems to agree with a call-and-response 
information transfer paradigm of interaction. However, the 
analysis model for interaction has focused research on the 
computationally difficult task of syntactical understanding 
and response. The assumption being that the communication 
requires the transfer of information in the performed 
medium, ignoring the general social connection between 
performers. Generally, performers remain in what might be 
termed social contact with each other, by placing themselves 
with in line of sight and/or range of other communication 
modes distinct from the sounds they are producing. This 
preference, shown by most performers, suggests that these 
other forms of communication affect the performer’s ability 
to interact the others. 
 
Interactive performance projects, largely in the context of 
interdisciplinary performance, have already been exploring a 
variety of communication cues such as visual movement, 
acoustic variation [9] [18] and multisensory multimedia [3] 
to expand the sensory relationship between the performer and 
the system. Explorations in Multimedia and interdisciplinary 
interaction have indicated that the performer communication 
cannot rely on the syntax of a particular performance 
domain, since the communication must cross between 
domains such as music and dance. Often such interactions 
become dependent on general expressive gestures that are not 
domain specific and may be associated with pure human 
body expression.  
 
 
 



 

2. EMBODIMENT OF MEDIA OBJECTS 
If we are to put the physical body in an interactive 
relationship with a media object, an understanding of the 
perceived body is required. Writers such as Heidegger, 
Merleau-Ponty, and Varela have put forward the idea that all 
knowledge of the self and the world starts with the lived 
experience. This knowledge includes the body knowledge 
understood to reside in the body such as muscle memory, 
habit, and instinct, but has at its core the process of 
perception in which the body and mind are unified in the act 
of sensing, and understanding the world that we are a part of 
[12]. Implicit in this understanding of knowledge is the idea 
that there is no separation between the physical body and the 
cognitive self, no Mind-Body separation. The key concept is 
that I am part of the world. I am neither in the world 
(empiricism) or have the world in me (intellectualism) but 
rather that I am both subject and object at the same time in 
constant interaction. Merleau-Ponty describes this state as 
being both a thing among things and that which sees and 
touches [11]. He refers to this idea in his philosophy of 
embodiment as Reversibility.  
 
Further to the notion of reversibility, Merleau-Ponty 
maintains that our knowledge of the world is constructed by 
the interplay between our presence in it and our perception of 
it. 
 

“It is the body and it alone, because it is a two-
dimensional being, that can bring us to the things 
themselves, which are themselves not flat beings but 
beings in depth, inaccessible to a subject that would 
survey them from above, open to him alone that, if it be 
possible, would coexist with them in the same world” 
[11]. 

 
When we consider that our own body is both an objective 
body and a phenomenal body, that constructs the world by 
being part of it [11], then perceiving the body of the digital 
object is a matter of perceiving an experience with it through 
our body senses. The body of the object is constructed 
through our embodied experience with it. Consequently, 
body may be viewed as a perception of possible interaction 
more then a physical state.  
 
In a media installation, Arranging With a White Rabbit, I 
explored this approach to knowing the body of a media 
object. The installation involved a moving light, a virtual 
windchime and a musical trill (a musical gesture independent 
of any instrument). These three objects illustrated three 
approaches to abstraction and space. The light defined area 
visibly with a constant lighting texture even though it moved 
throughout the space. The windchimes were invisible but 
defined area sonically through a consistent sound texture that 
remained spatially located. The trill defined a musical space, 
existing only as the musical gesture of a pitch change and 
rhythmic texture. The trill remained consistent in its gestural 
space, but moved throughout the virtual ensemble, allowing 
it no consistency of timber or physical association. During 
the studies that led up to the installation, I discovered that 
that all three of these media objects could be perceived as 
embodied objects in the physical space. Through the sensual 
perception of the system’s responses to gestures and objects 

in the space, the experiencer’s knowledge of the space was 
constructed to include knowing the Media objects as 
responsive embodied object inhabiting the physical space. 
One key factor to this knowledge was that the object’s 
response, constructed by the system, needed to be 
identifiable with the object. Associating the response with 
the object was easily achieved by designing consistent 
responses, and yet, a strictly consistent response defined the 
objects perceptually as inanimate objects, not as agents 
acting in the space.  
 
Still, the objects were perceived as bodies in the physical 
space, regardless of the media and abstraction used to define 
and render them in the physical space. The study shows that 
through experience, our senses provide input about the 
world, but the input is not knowledge until it is perceived and 
built up into a worldview. Perception is the reflective process 
involving all the data being sensed including sensation of 
self-knowledge. The self-knowledge gives context that 
makes the perceived input knowledge. It is the interaction 
between self-knowledge, sensation, and perception that 
forms our knowledge and our world. 
 
3. IMPROVISATORY PERFORMANCE 
The understanding of embodiment and embodied knowledge 
also has implications in understanding the communication 
process between performers. Communication in performance 
is an inter-subjective phenomenon, where understanding is 
agreed upon by the agents involved in the moment. As 
Lockford and Pelias explain: 
 

“Even when faced with the challenge to perform in an 
unscripted moment, performers understand that they are 
engaged in an ongoing communicative exchange. This 
exchange is a process best conceived, not as an act of 
information transmission or shared understanding, but 
as communication scholar H. L. Goodall, Jr. would have 
it, as an act of ‘boundary negotiation’.” [10] 

 
Here “boundary negotiation” refers to the process in which 
the self of the performer is incremental built with in the 
context of the performance. This notion of building is 
parallel to the notion of the self being both subject and object 
in process of constructing knowledge. In a theatrical sense, 
this process is the build up of character and location as new 
information is reveled during the scene. Such a negotiation 
implies that the agent must be able to respond to new 
information while simultaneously presenting information to 
contribute to the self of other agents. Negotiation in these 
terms is a coordination of the interaction between agents 
[10]. Based on this requirement to coordinate their 
interactions, it becomes imperative that all agents are able to 
negotiate the coordination of their intention and therefore 
able to track the intention of the others. 
 
The importance of the agent’s ability to track the intention of 
others is highlighted further through considering issues of 
trust. Since the agents constitute themselves and each other 
through the negotiation of boundries [10], this inter-
subjective communication requires a sense of trust. For a 
performer to be open to constituting their performance 
identity anew in negotiation with others on the stage, they 



 

must trust the environment. Furthermore, a sense of support 
is established when their actions both affect and support 
other agents. The support builds out of the trust in the inter-
subjective understanding of the moment, the trust that all 
agents’ understanding of the moment points to the same goal. 
Keeping the ensemble synchronized is a trust in the inter-
subjective understanding, and requires all the performer-
agents are able to track the intention of the others. 
Consequently, all agents need to be able to project their 
intentions. 
 
4. AGENCY 
Trust has further implication on agency. Bogart and Landau 
coach students of theater improvisation to “trust in letting 
something occur onstage, rather then making it occur” [1]. 
Although this statement implies that the performer’s agency 
should be initiated, it does not mean that nothing should be 
started, but implies an avoidance of forcing a start. We might 
call this letting something occur an additive approach to 
interaction where additive suggests that the agency is added 
to the state of the system regardless of the system’s current 
state. The notion of adding has strong implications for the 
traditional response communication model. To trust in the 
something that will happen is to coordinate actions in order 
to add to actions that are happening. The act of coordination 
cannot be done in response. The improviser must move 
beyond the cognitive and trust in the intuitive [10]). 
 
5. INTUITION AND INTENTION 
Research in the field of neuroscience has recently suggested 
links between intuition and intention. Neurons found in pre-
motor areas of the brain have been shown to fire, not only 
when producing a sound or action, but when the subject 
hears the sound or observes others performing the same 
action as well [5]) [7] [6]. The firing of these neurons allows 
the subject to predict the outcome of their own actions as 
well as the actions of others. “This implicit, automatic, and 
unconscious process of motor simulation enables the 
observer to use his/her own resources to penetrate the world 
of the other without the need of theorizing about it” [4]. 
What is crucial to the phenomenon is that the action observed 
must be goal oriented; in other words, it must have intention 
[5] [7] [6]. These findings suggest that as social being we 
have developed the ability to intuitively predict the actions 
and sounds of objects and agents around us.  
 
Still, the research leaves some question as to the usefulness 
of mirror neurons in human-computer interaction. The 
findings to date, concerning a person’s ability to perceive 
intention in others, suggest that the ability diminishes in 
correspondence to the physical similarity with the other. The 
implication of these findings is that a human subject 
perceives, in a pre-conscious manor, the intention of other 
humans, but less so the intention of apes, only slightly those 
of other animals. These tests also suggest that there is no pre-
conscious perception of the intention of a machine. The 
prevalent reason given for these results is the degree of 
movement similarity between subjects [5]. Thus, it is unclear 
whether the system’s actions/response, when modeled on the 
response of a performer, would affect the per-cognitive 
process of a human performer. 

 
However, the presence of the pre-cognitive function implies 
that the cognitive system as a whole works in connection 
with the pre-cognitive mechanism; and that even at a 
cognitive level, interaction is governed by the prediction of 
events as much or more then the reaction to events. The 
claim that animals, including humans, respond to the 
becoming of an event is also supported by David Lee’s 
General Motion Gap theory. His theory addresses the 
cognitive process undertaken by any animal coordinating its 
actions with its environment. In his paper How Movement is 
guided, Lee suggests that the information guiding movement 
must be extrapolated into the future in order to facilitate the 
rapid guidance of movement [8]. In his theory, Lee discusses 
interactions with both physical objects and metaphysical 
objects such as musical pitches. This theory implies that an 
animal’s interaction with an intended goal, physical or 
virtual, is guided by a cognitive process involving prediction.  
 
The separation of time and action is also evident in research 
done on conscious will and motion. Of special interest are 
the indications that intention happens significantly before the 
action is physicalized. Wegner, in his book “The Illusion of 
Conscious Will”, presents the work of Kornhuber and 
Deecke (1965) as well as Libet (1983). These researchers ran 
studies showing that an increase in brain activity occurred in 
subjects up to 800ms before a voluntary action took place. In 
the case of Libet’s experiments, brain activity was recorded 
over 300ms before the subject was even aware they wanted 
to act [17].  These findings further indicate that humans do 
not live in a static present moment, but rather in a moment 
becoming the next. Our social engagements are informed by 
an embodied empathy that allows minor predictions of those 
around us. We react not in the moment but in the moment 
next over half a second late.  
 
6. PERFORMER MODEL 
These theories provide and argument that humans interact 
with the world by perceiving the intentions of both 
themselves and others in the environment. This argument 
supports the presented theory on communication in 
performance, which proposes that the communication 
between performers be understood as a negotiation and 
coordination between agents. Based on these theories, I 
suggest that a framework for interaction must address: 
 
 1) The need to negotiate boundries and build trust with 
  others  
  2) The development of an inter-subjective   
   understanding of the moment  
 3) Agency and acceptance in the environment 
 
The words Trust, Understanding and Acceptance are crucial 
here, but not because of what they mean. The association of 
these words with human experience indicates that the focus 
of the framework must be the performer’s experience. And 
yet, embodiment theory argues that experience is based on 
perception, and the theories presented from cognitive science 
and performance practice demonstrate that perception of 
intention is key to our interactions with our environment and 
the agents in it. Through this line of reasoning, we may now 
suggest that perceiving intention is integral to the performer 



 

experiencing of agency, acceptance and trust. Therefore, the 
foundation to the proposed framework is an understanding of 
the mechanism that allows the performer to perceive the 
system’s intention. The following studies have been a step 
towards this understanding. 
 
6.1 Testing the Frame 
I performed a series of studies looking at the experience of 
the performer working in a system designed to project its 
intention. The system used to conduct the studies took two 
forms, visual and sonic. Both systems were designed using 
an iterative process guided by a first person methodology. In 
order to focus the study on the perception of the system’s 
projected intention, gestures in both systems were generated 
using simple random processes. The use of randomly 
generated gestures allowed the system to enact its own 
“intention” with no control or other data of the performer, 
and avoided any signifiers associated with expectation, 
structure or syntax in the medium. The response paradigms 
chosen for both modes were informed by human response 
and perception behavior but were not intended to mimic it. 
Finally, the research was set up as studies into the experience 
of being afforded the ability to perceive the system’s 
intention. No expectation of creation or performance was 
imposed.  
 
The response gestures in the visual system were realized 
using an image of two concentric circles projected onto the 
floor of the performance space using an I-CUE dmx 
controllable mirror. The behavior of the system was set so 
that the inside circle needed to move off center for the entire 
image to move in the space. Stopping required the circle to 
return to the center. The direction and amount that it moved 
off center corresponded to the direction and speed at which 
the image was about to move. Since the movement of the 
inner circle was analogous to the thinking and preparing to 
move of a performer, the duration set for the inner circle to 
reach its maximum point was 300ms, in line with the 
research presented by Wegner. The speed at which the light 
was about to move was mapped to the distance moved by the 
inner circle off of center, modeled loosely on a bodies need 
to shift its center of gravity in preparation to move. The 
movement of the light object was constrained using a 
dynamic weighted random algorithm. The probability of the 
light moving in any direction was a function of its position in 
the space.  
 
The sonic version of the study developed from the common 
idea that breath acts as an embodied connection within a 
group. The acoustics of a flute were digitally modeled, 
allowing the synthesis of the breath associated with playing 
the instrument to be controlled separately from the tone of 
the flute. Using the digital model as the sound source, a 
number of sessions were conducted, exploring the possibility 
of perceiving information concerning the intention of the 
system. The information was embedded in different parts of 
the breath sound by manipulating the parameters of the flute 
model to control the quality and duration of the breath 
sounds before and after the flute tone. The timings of the 
different sound qualities were functions of the generated 
gesture’s length, density and speed.  
 

 
6.2 Experiencing the system 
I spent a number of sessions working in the two systems to 
feel the experience of being in the space with each system. 
As might be expected, anthropomorphizing the light was 
almost automatic. I perceived its motion as a nervous 
exploring intention, even though I knew the movements were 
purely random. And still, as much as I perceived the motions 
as exploratory, I quickly became aware that the system had 
no sense of my presence. Although this limitation had been 
part of the design, it was interesting to note how easily I 
perceived the design as experience. In fact, though the model 
for the interaction design had been “tag”, due to its lack of 
awareness and my ability to anticipate its movements, the 
interaction quickly became like playing in ocean waves or 
taunting a blindfolded partner. The random movements had a 
lunging and staking quality. But without the impression of 
being the object of it’s stalking, I noticed myself considering 
its projected intended motion and circling to the other side 
just out of “reach”. The random process used for starting and 
stopping also produced occasional “fakes” in which the Light 
Actor moved its “weight” in one direction then immediately 
moved it back to a center position. This emergent behavior 
was of special interest. The perception that I could tell where 
it was “thinking” of moving encouraged me to get close but 
the impression that it could “change its mind” kept up the 
engagement. 
 
During a second session, I focused on moving with the light 
rather then on avoiding the light. At first, I changed only my 
behavior; the system’s behavior pattern remained the same as 
before. My experience of this interaction was very 
unsatisfying. Although I could tell where the light was going, 
I had very little time to coordinate my own movements. The 
interaction quickly became a dodging rather than a moving 
with. I therefore changed the systems behavior settings to 
generate movements that tended to be longer with less “fake” 
motions. These changes were modeled after mirroring 
exercises in which human partners try to mimic each other’s 
motion without a sense of leading. In these exercises, fluid, 
often slow, predictable motions are emphasized. With the 
system’s behavior modeled on mirroring exercises, I found 
the experience of moving with the light became possible; 
however, the quality of my movement remained at a “proof 
of concept” level. The interaction did not inspire flow or 
exploration in my own movement. I could move with the 
light but not dance with the light. 
 
The audio-based system had a much different impact. 
Whereas the visual system had initially inspired an avoidance 
response and only after being re-modeled, produced a 
moving with response, my experience was that the breath 
model in the audio based system immediately inspired a 
moving with response. The breath sound in the first session 
was linked to the duration of the generated phrase and 
produced a feeling of lift into tone of the sound. The feeling 
of “lift” encouraged the alignment of my motion with the 
onset of the sound even though I had no knowledge of when 
it would happen. 
 
Through reflecting on my response, I noticed that I perceived 
the breath generated by the physical model in two distinct 



 

parts: the inhale and the stream focusing. I also noticed that I 
was preparing to move on the inhale and initiating the 
moving on the small change of breath sound just before the 
flute tone. This discovery inspired a series of sessions 
exploring the breaking of the breath sound into three parts: 
inhale, focused air-stream, and breath trail-off. I then mapped 
inhale duration and volume to phrase tempo and duration 
respectfully, based on the experience that breathing into a 
beat often signals a down beat and that more air is needed to 
play longer phrases. The system using this metaphor allowed 
me to often anticipate the random phrase and move with it in 
tempo, but only within a small range of tempo values. 
However, when inhale duration was calculated as a function 
of phrase length, I found that I moved with the sound without 
much thought. Through reflection of this observation, I 
concluded that model linking duration of breath to tempo 
was experienced as a culturally learned sign. This realization 
illustrated the issue of cognitive load in interpretation as a 
concern for any system that is based on perception. 
 
7. CONCLUSION 
Humans have developed a complex process for generating 
knowledge through lived experience. The philosophical 
theory of Embodiment describes this process as interplay 
between our presence in the world and our perception of it. 
This theory converges with theories from performance 
practice, which suggest that human interaction is a process of 
perceiving and building the self and others. Resent research 
in cognitive science has added to what was understood in 
performance theory, claiming that our interaction with the 
world is not restricted to reacting to enacted events but is 
fundamentally built on understanding and prediction events 
through the perception of the intention of others in the 
environment. Based on these theories, I have argued that a 
framework for interaction performance must have at it’s 
foundation the ability of all agents to perceive the intention 
of the other agents and therefore be able to project their own 
intention.  
 
This paper has present, along with the underling theories, a 
series of studies of systems developed around the principle of 
agents projecting their intention. The results of these studies 
indicate that it is possible to embed into response gestures of 
visual or audio media agents information that enables a 
performer to perceive the intention of the agent. However, 
further exploration and research in to the methods and 
metaphors is needed. A key issues that has been discovered 
by these studies is the significance of the cognitive load 
imposed on the performer from trying to predict the action of 
the system. Although there are indications that the manner in 
which the system expressed its intention does not need to be 
modeled on a known paradigm, these preliminary studies 
suggest that a stronger reference to signifiers that are already 
part of the performer’s body knowledge reduces the 
performer’s need to rationally analyze the intention of the 
system. However, the parameters around this issue have not 
been isolated. Still, a feeling of trust and sharing of space 
was experienced in the systems modeling the projecting of 
intention. These results are encouraging but more work will 
need to be done before such a system is to the point of 
collaborative interaction. 
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Abstract—Providing high capacity services in wireless 

communications systems, is of great interest to researchers. 
Many researchers have been interested in multiple-input-
multiple-output (MIMO) wireless systems that guarantee 
achievement of such goal [4] and [8]. One of the great 
challenges regarding a MIMO channel is to find the channel 
characteristics by estimating its impulse response which is time 
variant. In this paper, a novel scheme using a blind algorithm 
is presented to estimate the response of a MIMO channel. To 
the best of our knowledge, it is the first time that the Bussgang 
algorithm is used to estimate the channel. This novel method 
profits from the basic idea of the Bussgang Deconvolution 
algorithm, which was first proposed by Bellini, [1], [7] and [9]. 
This algorithm is iterative, completely self-tuning, and has a 
practically low-complexity structure. Computer simulations 
are presented to confirm the robustness of the analysis and 
illustrate the acceptable performance of this new approach by 
considering its tracking behavior, BER, stability, as well as its 
low complexity. 
 

Index Terms—MIMO channel, Bussgang algorithm, cost 
function adaptivity, bit error rate (BER) 
 

I. INTRODUCTION 
ECENTLY, many researchers have been interested in 
MIMO wireless systems that guarantee achievement of 

high capacity services in wireless communication systems 
[4].  Where the channel bandwidth and the total transmitted 
power are constrained, it is known that by forming a 
channel, using increased spatial dimensions, one can achieve 
extraordinarily large capacities [4] and [6]. The main issue 
on MIMO channel study, is characterizing the time variant 
channel, and determining the channel impulse response. 
Although the physical phenomena constituting the channel 
response are very complex, and often non-linear, their 
effects upon the transmitted signal can be quite accurately 
modeled by a linear, possibly time-variant, system. Many 
methods have been proposed to achieve this goal. The 
presented algorithms for channel estimation can be divided 
in several categories. In a wide range of these algorithms, a 
training sequence is used to provide more accurate channel 
estimates. But in a mobile communication channel, it is 
impractical to employ a training sequence of long duration 
[7]. Therefore, many attempts have been made towards 
channel estimation without the use of training sequences or 
with the help of a short training sequence to establish a first 
proper estimate, and then to continue the estimation process 

without training. This group of etimation methods, is called 
blind methods. One of the most well-known blind 
algorithms is the Bussgang algorithm [1], [7], and [9]. The 
Bussgang algorithm is a blind algorithm mainly used to 
design the equalizers.  

In this paper, the conventional Bussgang idea, is modified 
and employed to estimate the channel behavior. In this 
approach, an iterative algorithm is developed to adapt the 
Bussgang parameters. Then the Minimum Mean Squared 
Error (MMSE) criterion is employed in the receiver to detect 
the transmitted vector. Computer simulations are presented 
to confirm the robustness of the analysis and illustrate the 
acceptable performance of this new approach. We assume 
that the system is single user. Therefore, the effect of 
Multiple Access Interference (MAI) is not considered.   

The paper is organized as follows: in section 2, a review 
of the conventional Bussgang method is presented, and then 
the problem formulation is stated. Section 3 presents the 
novel blind Bussgang-based iterative estimation method, the 
receiver block diagram, and signal detection criterion. In 
section 4, we introduce the simulation results for channel 
estimation, and symbol detection and describe the 
advantages of this system. And finally, in section 5, the 
paper is concluded. 

II.  PROBLEM FORMULATION 
In this paper, we use lower and upper case boldface letters 

to denote column vectors and matrices, respectively. 
Matrices I , and 0 , stand for the identity matrix and all-

zero matrix, respectively. Superscripts ∗(.) , T(.)  and 
H(.) are sequentially denoting the complex conjugate, the 

transpose, and the complex conjugate transpose (hermitian). 
 

A. Conventional Bussgang Method 
Modified Bussgang algorithms for blind channel 

equalization are based on the Bayesian iterative estimation 
of the source sequence [2] and [3]. These algorithms, 
introducing a kind of source adaptivity, were developed to 
reduce the computational complexity of the original 
Bussgang algorithm as well as to make it more flexible [2]. 
In the blind deconvolution, only the output signal is known 
(the system and the input signal, are unknown), and the 
objective is to find both the input signal and the system 

R 
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transfer function. In all deconvolution problems, we apply 
the same scenario.  

Note that the parameters adaptivity by including the cost 
function adaptivity, makes the algorithm ‘more blind’ [3]. In 
the Bussgang technique, a nonlinear zero memory 
estimator, (.)g , is used to operate on the input signal, )(tz , 
at the processor part of the system. Then, the difference 
between the estimator, )(zg , and signal, z , contributes to 
form the estimate of the next snapshot [3]. In the original 
Bellini’s theory, the optimal estimator depends on the 
statistics of the noise and the source sequence [9]. 

 

B. System model 
The MIMO system of interest, equipped with 

tN transmitting antennas and rN receiving antennas, can 
be modeled as a matrix FIR filter. The channel between each 
transmit and receive pair is modeled as a flat fading process. 
H  represents the tr NN channel response matrix. The 
channel is Rician, which is a more general case than the 
Rayleigh channel. The Rician probability density function is 
often characterized by the ratio of the direct component 
power, 2

0A , to the diffuse component power, 22 dσ  in 

decibel, K (dB), as below, 

K (dB) .
2

log10 2

2
0

10 ⎥
⎦

⎤
⎢
⎣

⎡
=

d

A
σ

 
  

(1) 

For −∞=K dB, there is no direct path, and Rician 
distribution becomes Rayleigh. For higher values of K , the 
Rician distribution becomes almost Gaussian [13] and [14]. 

Each transmitted symbol vector is denoted by b , an 
1×tN  column vector whose components are statistically 

independent Gaussian variables. n  is a 1×rN  column 
vector, with zero-mean additive white Gaussian noise 
elements with the variance of 2σ . It is assumed that the 
channel matrix, H , and the noise vector, n , are time-
variant. The received 1×rN  vector is denoted by r . Each 
receive antenna observes a linear combination of all 
transmitted data sequences, each distorted by ISI, under the 
white Gaussian noise. Specifically, the discrete time 
observable signal, from the j th receive antenna 

(with rNj ,...,1= ) at time t , )( j
tr , is given by 

)()(),(

1

)( j
t

i
t

ji
t

N

i

j
t nbhr

t

+= ∑
=

, (2)

where ),( ji
th  is the channel impulse response between the 

i th input and the j th output of the MIMO channel at time 

t . The complex baseband constellation point )(i
tb is 

transmitted by the i th transmitting antenna at time t , and 
)( j

tn is the complex noise sample at the j th receiver. In 

essence, there exist a total of tr NN  interfering and time-

varying SI channels, ),( ji
th (with tNi ,...,1=  and 

rNj ,...,1= ). A clear way to represent the time variation 
of the MIMO channel coefficients, is to rewrite the input-
output relationship of (2) in vector form, by collecting )( j

tr  

from all receiver antennas and )( j
tn from all channels, at 

time t , into the rN -dimensional column vectors, r and n , 

respectively, and rewriting the channel taps, ),( jih , at 
time t ,  in an tr NN rectangular matrix, H ,  
the relation between vectors will be as follows: 

Here the goal is to estimate H , while receiving r at 

rN receive antennas. Signal to Noise Ratio (SNR) is known 
from the transmitted signal and the channel specifications. 
The SNR is set to be the same value for all the transmit 
antennas. By choosing the factor K (dB), and neglecting the 
co-channel interference, the SNR of each interfering 
channel, is  

2

10/101log 10SNR
σ

K+
= , (4) 

because the 2-PSK points are normalized to unit power [11].  
Given that all tr NN  (direct and interfering) ISI channels 

are normalized to have equal energy of 10/101 K+ , the 
optimum allocation of power among the tN transmitters, 
without special shaping, is power balanced [10] and [11]. 
Although, different channel energies and transmit power 
allocation can be explored, but in this paper, all simulations 
are performed based on the above assumptions. 

III. THE PROPOSED ALGORITHM  

A. Modified Bussgang estimation 
As stated in section 2, Bussgang equalizers benefit from a 

zero memory nonlinear function which changes in order to 
approach the real value of the unobserved signal. This 
process is performed iteratively; therefore, the function is 
updated repeatedly and results in obtaining the modified 
version of the Bussgang equalizer, which is used to achieve 
a good estimate of the unknown channel and the unobserved 
transmitted sequence. 

We define the cost function based on the modified 
system, and then by minimizing the cost function, the 
appropriate value of the channel matrix is obtained. Because 
the channel is time-varying, this process is done repeatedly. 
The new calculated H , is the input of the signal detector. In 
this approach, we have exploited an MMSE detector. The 

estimated matrix, Ĥ , and the received signal, r , are the 
inputs of the detector. In Fig. 1, the block diagram of the 
system of interest is depicted.    

nHbr += . (3) 
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Fig. 1: Block diagram of the MIMO system receiver comprised of the 

Bussgang estimator and the MMSE sequence detector. 
 

The received vector, r , is fed to the MMSE detector 

which is shown by box F . 1nH +
ˆ , denotes the new estimate 

of the channel matrix, H , and r  denotes the inputs of the 

MMSE algorithm. b̂ , the output of box F , is the soft 
decision of the transmitted signal, b .  Function (.)g , 

operates on r . The difference between r and )(rg  forms 
the error signal, ,e  which is the input of the estimator block 

to form the next estimate of the channel matrix. b̂  is fed to 
the decision block, which is a simple sign operator because 
of the 2-PSK modulation. This block can be designed 
according to the type of the modulation used in the system.  

As stated, first we define the cost function, J , as below  
2))((),ˆJ( rrrH g−= . 

(5) 

In order to achieve the minimum value of the cost function, 
it suffices to compute its derivative. J  is a quadratic 
function; thus, it has minima. By computing the derivative 

of ),ˆJ( rH , it follows 

brr1rH ˆ)])()()(([ˆ −−′−=Δ ggη , (6) 

where η is a positive step size and )(rg ′ denotes the 

derivative of the  function )(rg with respect to r . 
Some well known functions are used to form the 

Bussgang operator, (.).g  For a wide range of noise power, a 
suitable choice is the bilateral Sigmoid function as follows, 

czg =)( tanh )(dz , (7) 

while c and d are chosen properly [5] and [16]. Clearly a 
suitable pair of constant parameters, c and d , can not be 
fixed since all the conditions of the system, such as noise, 
interference, etc. are varying. In order to update c , we use 
the approach suggested in [7]: 

)](tanhE[
]E[

rr
rr

dc
c ∗

∗

= . (8) 

To obtain d , we use the Gradient Steepest Descent 
(GSD) method, 

where λ is the positive arbitrary step size to be adjusted 
accordingly. By substituting the new values in the cost 

function equation, the new estimate of Ĥ  is simply 
computed as below 

HHH n1n
ˆˆˆ Δ⋅+=+ μ . (10) 

For each vector of the received signal, this process is 
repeated. Therefore, the channel is continuously updated. 
For better channel tracking, and reaching a good starting 
point for the channel estimation, we can use a training 
sequence and pursue the estimation process by one of the 
known algorithms (such as LMS, ML, EM, etc.), and then 
continue the estimation process blindly. As well, we can 
allocate a very small portion of each transmitted block to 
training symbols, and then switch the receiver to decision-
directed mode and continue the estimation and detection 
process with no pilot. 

The simulation results show that a small percentage of 
pilot (training) symbols have a great influence on the 
performance of the system and decreases the BER 
significantly. 

 

B.  Signal detection using MMSE criterion 
In order to generate estimates of the transmitted symbols, 

we use the MMSE criterion to adjust the tap weight 

coefficients [12]. b̂ , the optimum MMSE estimate of the 
transmitted signal, b , is generated based on the estimated 

channel response matrix, Ĥ , and the received vector, r , 
This algorithm provides a computationally efficient means 

to accomplish the task of signal detection. The detection 
method described above is a standard solution.  

IV.  SIMULATION RESULTS 
We have developed the above estimation and detection 

process for different structures of transmit and receive 
antennas in different channel conditions. The proposed 
algorithm has shown very good performance under each 
imposed condition. The channel estimation algorithm is also 
used for the case of semi blind, where a portion of each 
block of the transmitted signal is allocated to the training 
symbols. By changing the percentage of the pilot bits, the 
performance of this novel method is evaluated by 
considering the BER. Also, the tracking of the channel is 
experienced by changing the effective parameters.  

 

A. Channel estimation 
We consider the tracking behavior and the BER as 

performance criteria for simulated channels. In Fig. 2, the 
tracking of the channel is depicted for two different values 
of Rician Factor, K . The real random channel impulse 
response and the estimated impulse response are tracked for 
a large sampling period. Each unit on the horizontal axis 
consists of 10 blocks of 256 bits, along which the Mean 
Square (MS) error is computed. The tracking behavior of the 
channel is quite acceptable. We observe that the estimation 
has the same fluctuations as the real channel.  
 

rHIHHr
tN ′+′= − ˆ]ˆˆ[)F( 12σ . (11) 

[( tanh( )) (sech( ))(sech( )) ]d c c d d dλ ∗ ∗Δ = −r r r r r (9)
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(b)  

Fig. 2: MS of the real random channel and the estimated one via the 

suggested Bussgang scheme for two different channels: 2tN = , 

6rN = ,   SNR=10 dB, (a) 10K = dB, (b) 20K = dB. 

 
Although the channel has an impulsive change, the 
estimation tracks it with the same pace. The low difference 
between these two values, represents the small MSE of the 
estimated channel components. 
 

B. Symbol detection 
In Fig. 3, the performance versus SNR is depicted.  Four 

transmit antennas are used in a channel of Rician factor K  
of 10dB. This process is repeated for different numbers of 
receive antennas.  

Fig. 4 shows the performance versus the number of 
receive antennas with 4 transmit antennas of 20 dB Rician 
factor for different power allocations of the transmitted 
signal. For the same amount of power, the algorithm has 
better performance as the number of receive antennas 
increases. The process is repeated for different Rician 
channels where it is shown that for larger Rician factor (in 
dB) the performance improves.  

In Fig. 5, performance of the proposed algorithm is 
shown versus the percentage of training symbols in each 
block of the transmitted signal. The algorithm is performed 
by 4 transmit and 6 receive antennas with 10 dB of SNR for 
different ratios of Rician factor. In Fig. 5, performance of 
the proposed algorithm is shown versus the percentage of 
training symbols in each block of the transmitted signal. The 

algorithm is performed by 4 transmit and 6 receive antennas 
with 10 dB of SNR for different ratios of Rician factor. 
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Fig. 3: Performance of the proposed algorithm for different SNR with 

tN = 4 and 10 dB Rician factor. 
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Fig. 4: Performance of the proposed algorithm for different rN , 

with tN = 4 and 20 dB Rician factor. 
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Fig. 5: Performance of the proposed algorithm for different training 

percentages with tN =4, rN =6 and SNR=10. 
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C.  Advantages 
The advantages of this novel approach when compared 

with the conventional methods are evident. Most of the 
blind methods are very complex and time consuming. Some 
of them need extra information about the system condition. 
The most important contribution of this method, is its 
simplicity and low complexity in the suggested practical 
system. The system has lower complexity, lower cost, and 
more possibility for realization over most of the proposed 
algorithms. 

Another merit of this novel approach is its good 
performance in terms of the BER, and tracking behavior. 

It can be implemented as a fully blind processor. As well, 
it is adjustable to be used as a pilot assisted one; thus, it can 
be a fully blind or a semi-blind algorithm. Therefore, under 
the harsh condition of the channel, or when the power of the 
transmitted signal is insufficient, the system can be switched 
to a more pilot-assisted mode.  In other words, the degree of 
blindness of the estimator is adjustable. 

V.  CONCLUSION 
In this paper, the problems of blind channel estimation 

and symbol detection are addressed for a typical MIMO 
system operating in frequency flat fading environments. A 
channel estimation scheme is proposed, which yields 
consistent channel estimates. The proposed scheme is 
simple to implement and capable of dealing with 
interference from various sources. Computer simulations are 
presented to confirm our analysis that illustrates the 
performance of this novel algorithm. In all the simulations 
presented in this paper, the receiver algorithm outlined 
above is implemented and compared to the performance of 
the system, by assuming different numbers of receive and 
transmit antennas in single user Rician channels with 
different amounts of power for the transmitting signal. The 
performance is also studied for the different Rician factors, 
K . 
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Abstract— In this paper, an Iterative Probabilistic 

Distribution Learning Algorithm (IPDLA) is proposed to detect 
symbols in Space-Time Block Coded (STBC) Multi Input Multi 
Output (MIMO) Communication System. We transform the 
STBC-MIMO system into a virtual multiuser STBC-MIMO 
system, where each user has multiple antennas. This 
transformation enables us to apply advance Multiuser Detection 
(MUD) techniques for detection. The STBC-MUD is known to be 
a NP-Hard problem. Using exhaustive search, the optimum 
detector or Maximum Likelihood (ML) has a computational 
complexity that exponentially increases with the number of users, 
transmit antennas, and complex modulation schemes.  

The IPDLA not only searches for a near-optimum solution in 
real time but also has very low complexity as compared to the 
ML detector. The IPDLA finds the near optimum solution by 
learning probability distribution from previous iterations. We 
also proposed a two stage IPDLA, exploiting the non-converging 
probabilities of probability distribution and then apply Local 
Search on these bits (we call it IPDLA-LS). Monte Carlo 
simulations are used to investigate the performance of the 
proposed algorithm with Zero Forcing (ZF), MMSE, VBLAST, 
and ML detectors in terms of bit error rate (BER), convergence, 
and complexity.  

Index Terms— space time block code, Multi-user detection, 
Probabilistic distribution learning  

I. INTRODUCTION  
ECENT research on wireless communication systems 
shows that using multiple antennas at the both the 
transmitter and receiver enables higher data rate 

communication as compared to the single antenna system [1]. 
The MIMO system has the ability to deal with multipath 
propagation. It effectively takes advantage of random fading 
and multipath delay spread [1][2]. It is also shown in [3] that 
the use of space-time block codes improves the capacity and 
unprecedented spectral efficiencies over wireless channels.  
In this paper, our focus is on an uplink scenario. In [4] Verdú 
proposed the single antenna based ML MUD that offers the 
best BER performance among all other detectors. In [5] Poor 
first proposed a space-time MUD algorithm. Space-time 
coded MUD techniques for Code Division Multiple Access 
(CDMA) is investigated in [6]. One of the optimum solutions 
to Space-Time Block Coded (STBC) MUD is the Maximum 
Likelihood (ML) detector but it requires tremendous 
processing power at the receiver side. The ML detector uses 

exhaustive search over all possible user symbol sequences [7], 
so its computational complexity increases exponentially with 
number of users and modulation scheme. Due to the high 
complexity of the ML detector, a number of suboptimum 
solutions were proposed (e.g., Conventional Detector (CD), 
Zero Forcing (ZF), and Minimum Mean Square Error 
(MMSE) [4-5]) 
 In CD, a bank of matched filters is used to detect each user 
while considering other users as noise. Due to the near-far 
effect, it suffers from Multiple Access Interference (MAI). 
The ZF detector attempts by nulling out the interference by 
direct inverting the channel with weight matrix. Hence, in the 
absence of channel noise it achieves perfect detection unlike 
CD [7], however, in the presence of channel noise, it leads to 
noise enhancement, which in turn leads to higher BER. 
Another class of linear detector is MMSE that minimizes the 
mean square error between the transmitted symbol and the 
decision variable. It also circumvents the noise enhancement 
problem. In near optimum detectors a Genetic Algorithm 
Detector (GAD) based STBC MUD detector was proposed in 
[8]. The problem with GAD is that it requires several 
parameter values to be fine tuned to achieve good results. 
Second in GAD it is difficult to predict the evolution of the 
population, and also, good blocks can be broken by the effect 
of crossover operators. 
By keeping in mind all the problems of previously proposed 
detectors, in this paper we introduce an iterative probabilistic 
distribution-learning detector. The Iterative Probabilistic 
Distribution Learning Algorithm (IPDLA) has its roots from 
estimation of distribution algorithms (EDA) [9]. These 
algorithms are inspired by learning and simulation of 
Bayesian networks as the foundation of distribution 
estimation. The IPDLA MUD operates on 
simultaneous/parallel solutions. Each iteration results in a new 
set of possible solutions created by estimating the joint 
probability distribution of the previous iteration. No parameter 
setting is required for this algorithm as compared to GAD. We 
also proposed a modified IPDLA with Local search, which 
further improves the performance of the detector. 
The rest of the paper is organized as follows. The system 
model and optimum symbol detection of STBC-MIMO-MUD 
is presented in section II. Section III proposes the IPDLA. 
Section IV provides the computational complexity 
comparison.

Iterative Probabilistic Distribution Learning 
Algorithm for Multi-user Space Time Block 

Coded Receiver 
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Simon Fraser University, School of Engineering Science  
8888 University Drive, Burnaby, BC   V5A 1S6 Canada 
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Fig. 1:  A block diagram of Multiuser STBC uplink system. 

 

 
 

Fig. 2:  Algorithm Flow Diagram 

 
 
Simulation results are presented in section V. Finally section 
VI concludes this paper. 

I. SYSTEM MODEL 
We consider a spatial multiplexing MIMO multiuser system 
with K users, NT transmit antenna for each user, and R receive 
antenna at the base station. Figure 1 shows a multiple antenna 
assisted multiuser space-time block coded uplink scenario. 
Source symbols are mapped into complex modulation 
schemes of M-PSK and M-QAM. The channel model is 
assumed to be quasi-static, and mean channel gain remains 
constant during one block of data.  It is also assumed that 
channel state information (CSI) is perfectly known at the 
receiver and remains constant during an entire block length. 
This assumption is reasonable if training or pilot signals are 

sent to learn the channel, which is constant for some 
coherence interval. In this paper, rate 1 Alamouti scheme [9] 
is used for STBC. According to the Alamouti scheme, the 
transmitted symbols for kth user is encoded as  
 

1 2
* *
2 1

k k

k k

s s
S

s s
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (1) 

where k
is  represent the symbol transmitted by kth user. Rows 

in (1) represent the time slots, and columns shows the symbols 
from different antennas. A generalized expression for K users, 
received signal at the rth receive antenna, at time slot t=1 will 
be 
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For this paper we are using NT = 2 per user .In Vector form, 
Multiuser space time coded received signal at the rth receive 
antenna, (for a pair of time slots i.e., t=1 and t=2) is 
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where ,r ty  represents receive data at rth antenna on tth time 
slot. k

is  is the kth user’s ith data symbol and ,k r
Nh is the channel 

gain of kth user between nth transmit antenna and rth receive 
antenna. We can also write (2) as  
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Equation (5) can be written as  
Y S H Z= +  (6) 

where 1 2RY ×∈^ is the received vector, 1 2KS ×∈^ is the transmitted 
symbol vector, channel matrix 2 2K RH ×∈^ , and additive noise 
vector 1 2RZ ×∈^ .     
Transmitted symbols from a known finite alphabet 

{ }1 2, ,..., MS s s s∈ of size, M, for each user at nth transmitted 
antenna are passed to the channel. The detector chooses one of 
the possible combinations of TN KM possible transmitted 

symbols. Assuming that the symbol vectors 1 2KS ×∈^  are 
equiprobable, the Maximum Likelihood (ML) detector always 
returns an optimal solution according to the following: 

1 2

ˆ arg max ( | )
KS

S P Y S
×∈^

�  (7) 

Assuming the additive noise, 1 2RZ ×∈^ , to be white and 
complex Gaussian, the ML detection can be expressed as the 
minimization of Euclidean distance to a target vector ,Y, over 
a TN K dimensional finite discrete set or 

2log ( )TN K M dimensional finite binary set: 

1 2

2ˆ arg min
KS

S Y SH
×∈

−
^

�  (8) 

The optimal ML detection scheme needs to search all 
TN KM or 2 TbN K symbol combinations (b is the number of bits 

per symbol). Enumerating over all possible combinations, and 
finding the one that can minimize the (8), is an NP-Hard 
problem. The computational complexity increases 
exponentially with constellation size, M, NT transmit antennas, 
and K number of users. High speed processing requirements 
of real time applications demand a comparatively simplified, 
fast and low complexity detection scheme  
One approach to do detection is the Zero Forcing (ZF) 
Detector which require the inverse of channel matrix 

†Ŝ H Y�  (9) 

where †H  denotes the Moore-Penrose pseudoinverse of H, 
which is a generalized inverse that exists even when H is 
rank deficient [11].A major drawback of ZF is that nulling out 
the interference without considering the noise can boost up the 
noise power significantly [12], which in turns results in 
performance degradation especially at low SNR. 
Another technique is MMSE that minimizes the mean 
squared-error [13]. MMSE includes the noise power in filter 
tap calculations. MMSE controls noise boost up by 
attenuating all the users to noise level.  

( ) 12ˆ H HS H H I H Yσ
−

+�  (10) 

where 2σ  is the noise power. Although MMSE is better than 
ZF however it is still not near to the optimal detector. 

II. ITERATIVE PROBABILISTIC DISTRIBUTION LEARNING 
ALGORITHM  

Generally, two techniques are used to solve NP-Hard 
problems. One is the branch and bound (B&B) which require 
high computational complexity time, so it is not recommended 
for large size or time sensitive problems. Another approach is 
the Evolutionary Algorithm (EA) that searches for near 
optimum solutions to obtain good results within a reasonable 
computing time. The problem with EA is that it depends to a 
large extent on associated parameters like operators, 
probabilities of crossover, probabilities of mutation, and 
replacement strategies.  
IPDLA is a population based search algorithm [10] that relies 
on probabilistic modeling of potential solutions in 
combination with the simulation of induced models to guide 
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their search. In this algorithm, the new population individuals 
are generated without crossover and mutation operators; 
instead, probability distribution is estimated through the joint 
probability distribution associated with the individuals 
selected at each iteration from the pool containing only the 
best individuals from the previous generations. A generalized 
IPDLA can be defined as ( ), , , , , ,sIPDLA I F pη= ∆ Ψ ϒ , 
where 

1.  I is the space of individuals (a set of simultaneous 
parallel solutions). In the problem in hand the search 
space is { }0,1 nI = where 2log ( )tn N K M= . 

2.  F  denotes a fitness function.  
3. ∆ is the maximum number of simultaneous/parallel 

solutions at a single iteration. 
4.  η  is the number of best solutions from ∆  solutions. 

5. sp is the selection probability to select η  solutions. 

6. Ψ is the estimated distribution from  η  solutions. 
7. ϒ is the termination criteria.  

The basic IPDLA algorithm is illustrated in figure 2 and 3. 
Each solution of IPDLA has length 2log ( )tn N K M=  bits. The 
initial solutions are obtained by sampling of probability 
distribution  

{ }
1

( ) ( ) 1,2,...,
n

j j
i

i

p X p x j
=

= ∀ = ∆∏  (11) 

The initial distribution is uniform, so 
{ }1,2,..., : ( 1) ( 0) 0.5i ii n p x p x∀ = = = = = . The solution of 

length, n, is a vector of random variable, 

( )1 2 3, , ,...,j j j j j
nX x x x x= , where ( )0,1j

ix ∈ . The current 

iterative solution can be written as  
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2 2
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X X X X
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x x x x x x x x

∆

∆ ∆ ∆ ∆

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (12) 

In each iteration, η  best solutions are selected from current 
∆ solutions. This selection can be accomplished using 
following expression 

1
1

( | )
n

i tP x Iη−Ψ =∏  (13) 

The basic principle of IPDLA can be illustrated using the 
following example, a well-known binary optimization 
problem known as one-max function, ( )

1
, 0,1

n

i i
i

F x x
=

= ∀ ∈∑ . 

Figure 3 shows four blocks of basic IPDLA algorithm [14]. In 
the given example, the task is to maximize the fitness 
function. The number of parallel solutions ( ∆ ) are 10 and n=6 
and 0.5sp = . For initialization we consider a uniform 
distribution { }1,2,...,6 : ( 1) ( 0) 0.5i ii p x p x∀ = = = = = .After evaluating 
the fitness function, we choose ( ) 5sp ×∆ =  best solutions. In 
the next step we estimate the probability distribution using 
(13) and then we generate new solutions according to the 

estimated probability distribution. In the last step, we replace 
the worst solutions with these newly generated solutions. The 
process is repeated till the convergence criterion is met. The 
same procedure is applied to STBC-MUD problem. Here the 
fitness function is to minimize (8), we convert the problem to 
a binary optimization problem by searching TN KM symbols to 
2 TbN K bits search. Each of the solutions has 
length, 2log ( )Tn N K M=  bits. 

   Index    x1 x2 x3 x4 x5 x6      Function 
                                               OneMax
   1           1  1  0   0   0  0        2          
   2           1  0  0   0   0  0        1          
   3           0  1  1   1   1  0        4          
   4           1  1  0   0   0  0        2          
   5           0  0  0   1   1  1        3          
   6           0  0  1   1   1  1        4          
   7           1  0  0   0   0  0        1         
   8           1  0  0   0   1  0        2         
   9           0  1  1   0   1  1        4          
   10         1  0  1   1   1   1       5

S
election

   Index    x1 x2 x3 x4 x5 x6      Function 
                                               OneMax
   3           0  1  1   1   1  0        4          
   5           0  0  0   1   1  1        3          
   6           0  0  1   1   1  1        4          
   9           0  1  1   0   1  1        4          
   10         1  0  1   1   1  1        5

Estimation
P(x1=1)=0.2   P(x2=1)=0.4
P(x3=1)=0.8   P(x4=1)=0.8
P(x5=1)=1.0   P(x6=1)=0.8  

G
en

er
at

io
n

   Index    x1 x2 x3 x4 x5 x6      Function 
                                               OneMax
   1           0  0  1   1   1  1        4          
   2           0  0  1   1   1  1        4          
   3           1  0  1   1   1  1        5          
   4           0  1  1   1   1  1        5          
   5           0  1  1   1   1  1        5

Probabilistic Model

Replacement

 
Fig. 3:  The basic understanding of iterative probability 
generation 

We also introduce an improved version of the IPDLA 
algorithm. The experimental results show that some of the 
probability distribution does not converge to 1. So we set a 
threshold µ  for the probability distributions to converge. If 
the values of any of the probability distributions is less than 
µ , we apply Local Search to these bits. 

III. COMPUTATIONAL COMPLEXITY 

The main purpose for the proposed near optimal algorithm is 
to illustrate their low computational complexity, in this 
section, we enumerate the computational complexity of ZF, 
MMSE, ML, IPDLA and IPDLA local search methods for 
STBC-MIMO-MUD problem. The complexity is counted as a 
time bound for algorithm , we will use ( )O i  notation as a 
metric to show the time bound. It is well known that the 
computational complexity of ML detector is ( )2nO  where 

2log ( )Tn N K M= [7]. It means we must evaluate all possible 
solutions and select the one that provides the minimum. 
However, this exhaustive search is impossible from a practical 
point of view. We need some sub-optimal detector. The ZF is 
one of the sub-optimum detectors. Since there is an inverse of 
a complex matrix is involve for ZF, the computational 
complexity of inverse of complex matrix is ( )3O n . The MMSE 

detector has the same computational complexity as of ZF 
detector. 
The computational complexity of IPDLA is approximately 
( )tO Iη  if η < ∆ , where It is the number of iterations.(we use 

the word approximately because in the initialization phase, the 
algorithm needs to calculate ∆ evaluations of fitness function). 
The worst case is ifη = ∆ , then computational complexity is 
( )tO I∆ . Additional operation required by IPDLA is to sort, 
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generate a probability distribution and random number 
generation. For each iteration, we need to generate nη ×  
random numbers. The computational complexity of random 
number generation is ( )1O . The sorting computational 
complexity is ( )log tO I∆ ∆ , so the computation complexity for 

large ∆ is ( ) ( )log logt t tO I I O Iη + ∆ ∆ ≈ ∆ ∆ . 
The computational complexity of IPDLA-LS depends on the 
number of non-converging probability distribution bits. First 
we need to set a threshold for local search (e.g. nth). Let the n1 
are the number of non-converging probability distribution 
bits. Then the computational complexity of IPDLA-LS will be 
( )1log 2n

tO I∆ ∆ +  and for the worst case it will 

be ( )log 2 thn
tO I∆ ∆ + . Normally nth has a small value to reduce the 

computational complexity (e.g. thn 8≤ ).In conclusion, IPDLA 
and IPDLA-LS offers very acceptable levels of complexity as 
compared to other detectors. Following parameters are used in 
our numerical results. The total number of service classes M = 
4 with service rates equal to R, 2R, 4R and 8R, where R is the 
base transmission 

IV. SIMULATION RESULTS 
For performance comparison, we present the simulation 
results of the proposed IPDLA and IPDLA-LS detectors with 
some of the existing detection techniques for STBC spatial 
multiplexing system. The channel is assumed to be quasi-
static for each pair of time slots, but independent among 
different users. A summary of various simulation parameters 
are 

• Users , { }K= 4,5,6  
• Number of transmit antennas per user 2TN =  
• Number Time slots 2sT =  (Alamouti Scheme) 
• Maximum number of simultaneous/parallel solutions 

at first iteration, { }50,70,100∆ = for { }K= 4,5,6 , 
respectively. 

• ∆  initialization : Random (With uniform 
probability) 

• Number of best solutions to determine probability 
distribution is { }25,35,50η = for { }K= 4,5,6 , 
respectively. 

• Number of Iterations { }30,45,50tI = for { }K= 4,5,6 , 
respectively. 

Figure 4 shows the BER performance comparison of ZF, 
MMSE, IPDLA and IPDLA-LS algorithms. The time to 
simulate the ML detector is huge, so we have only calculated 
the ML detector for the IPDLA and IPDLA-LS convergence 
results (see figure 8 and 9). The numbers of users are 4 with 
4-QAM modulated data. The number of transmit antenna per 
users NT are 2. With selection probability of 0.5, the numbers 
of parallel solutions are 50 at the initialization. As shown by 
the simulation result, there is gain of 1.8 and 2.0 dB at BER of 
10-2 for IPDLA and IPDLA-LS, respectively, over ZF and 
MMSE. Figure 5 and 6 show the BER performance for k=5 
and k=6. Since by using more users, the computational 

complexity increases exponentially, we need to increase the 
values of ∆ and the number of iterations.  
The increase in the number of iterations adds complexity 
while the increase in the number of parallel solutions requires 
more memory. The tradeoff between parallel solutions and 
Number of iterations is illustrated in figure 7, which shows the 
required combination of parallel solutions and the number of 
iterations for any desired BER. 
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Fig. 4:  BER performance for NT=2, K=4, 4-QAM with NR = 4 
antenna configuration over quasi-static fading channel. The number 
of simultaneous/parallel solutions 50∆ = , with 25η = and 0.5sp = . 
The number of Iterations are 30, Local search threshold is 

thn 8= (ML search space is ( )162O . 
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Fig. 5:  BER performance for NT=2, K=5, 4-QAM with NR = 4 
antenna configuration over quasi-static fading channel. The number 
of simultaneous/parallel solutions 70∆ = , with 35η =  and 

0.5sp = .The number of Iterations are 45, Local search threshold is 

thn 8= (ML search space is ( )202O . 

Figure 8 shows the convergence of IPDLA and IPDLA-LS 
to the ML detector. The SNR is fixed to 6dB, and the numbers 
of parallel solutions are fixed to 30. The rest of the parameters 
are the same as that of figure 4. The only variable here is the 
number of iterations. We can see a rapid convergence of these 
algorithms to the ML, which shows the robustness of the 
proposed algorithm. 
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Fig. 6:  BER performance for NT=2, K=6, 4-QAM with NR = 4 
antenna configuration over quasi-static fading channel. The number 
of simultaneous/parallel solutions 100∆ = , with 50η =  and 

0.5sp = .The number of Iterations are 50, Local search threshold is 

thn 8= (ML search space is ( )242O . 
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Fig. 7:  Tradeoff between number of parallel solutions and 
Number of Iterations 
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Fig. 8:  Convergence of IPDLA and IPDLA-LS for fixed number of 

simultaneous/parallel  solutions 30∆ = , 15η =  and 0.5sp = , NT=2, 
K=4,SNR=6dB, 4-QAM with NR = 4 antenna configuration over 
quasi-static fading channel. The number of Iterations are varied from 
1 to 100, Local search threshold is

thn 8= . 

10 15 20 25 30 35 40 45 50

10-2

10-1

Number of Parallel Solutions

B
E

R

 

 
ML
ZF
MMSE
IPDLA
IPDLA LS
VBLAST

 
Fig. 9:  Convergence of IPDLA and IPDLA-LS for fixed number of 
iterations 30tI = , 0.5sp = , NT=2, K=4,SNR=6dB, 4-QAM with NR = 
4 antenna configuration over quasi-static fading channel. The number 
of parallel solutions are varied from 10 to 50, the local search 
threshold is

thn 8= . 

V. CONCLUSION 
In this paper, we proposed two probabilistic distribution 
learning algorithms, (IPDLA and IPDLA-LS) for Multi 
antenna base Multiuser Space Time coded wireless 
communication system. These detectors are simple in 
implementation and approach to near optimum performance. 
The complexity of these algorithms is very low as compared 
with the optimum detector. This simplistic model, lesser 
implementation complexity, resistance to trap in local minima 
and convergence to near optimum solution in less iterations , 
makes it suitable candidate for complex NP-Hard 
communication problems.  
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Abstract— This paper addresses the problem of pedestrian 

detection in a still image. Similar to previous feature-based 
methods, the detection process in the proposed method is 
accomplished by calculating the similarity between features of 
the input image and the pedestrian-specific learned features. 

The contribution of the proposed method is in presenting a 
novel feature called segment feature. A segment feature consists 
of the position and shape of a region in an image. To achieve a 
high performance result, the Adaboost algorithm is employed to 
generate a strong classifier, based on the weak classifiers created 
for each segment feature. 

The performance of the proposed method is demonstrated 
using experimental results on INRIA datasets. Moreover, 
comparison results shows that the proposed method outperforms 
the detection ratio of the state-of-the-art approaches. 
 

Index Terms—Pedestrian Detection, Segment Feature, Object 
Detection, Detection by Learning. 
 

I. INTRODUCTION 
INDING pedestrians in a scene is a challenging problem 
for several reasons. First, according to the application, a 

wide range of acceptable pedestrians' poses can be considered. 
Second, occlusion could add to the complexity of the problem. 
Third, the complexity of the scene background could impact 
the detection procedure (Figure 1 shows how this problem 
becomes more complex to solve due to the above issues). As 
depicted in Figure 1.d, in a real scenario, objects that may look 
like a pedestrian make this problem harder to solve.  

The proposed method aims to create a bounding box over 
each pedestrian instead of finding the exact border. An 
example of a sample input image and the expected output 
image is shown in Figure 2.  

In the proposed approach, image segments are considered as 
mid-level features and are called segment features. Each 
segment feature captures a connected region of the input 
image that has similar pixels inside. Utilizing these segment 
features, a large number of weak classifiers is defined. Each of 
the weak classifiers employs only one of this segment features  
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a b c d 

Fig. 1.  Different situations in pedestrian detection, a) simple case, b) 
complicated background, c) occlusion, d) similar non-pedestrian objects. 

 

 
a b 

Fig. 2.  Sample pedestrian detection scenario, a) input image, b) output image. 
 

as the classification measure. The Adaboost algorithm is then 
used for exploiting the overall classification capability of the 
weak classifiers. 

The structure of this paper is as follows. In Section II, the 
previous work in the pedestrian detection literature is 
discussed. The proposed method is presented in detail in 
Section III. In Section IV, the experimental results of the 
proposed method are illustrated. In Section V, the conclusion 
of this paper is presented. 
 

II. PREVIOUS WORK 
Different types of approaches have been considered to solve 

the problem of pedestrian detection. Particularly, in [1] some 
Harr wavelets are utilized as the input descriptors and rectified 
using a linear Support Vector Machine (SVM) to generate a 

Pedestrian Detection: A Novel Approach Using 
Segment Features 

Mani Ranjbar 
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final classifier. Reference [2] employs a histogram of 
gradients (HOG) as its features and uses SVM to train the 
parameters of such classifiers. Using the HOG-based features, 
[2] achieves notable improvements compared to the results of 
[1]. Reference [2] also provides a large training and test 
dataset, INRIA, which contains a broad range of people 
posing under differing lighting conditions. Payam and Greg 
create shapelet features through a two step Adaboost 
algorithm [3]. They start with the image gradients in different 
orientations and combine them to make the shapelet features. 
The Shapelet approach significantly improves the performance 
of [2] in the INRIA dataset. In [4] some hypotheses are 
proposed using a local feature extractor and then a segment 
mask for each of these hypotheses  is learned using a training 
pedestrian mask. This hypothesis-based method performs very 
well in the crowded scenes (including occlusion).  

Other work is also reported in the literature for pedestrian 
detection in video sequences. For instance, Wren et al. applies 
background subtraction to find the moving objects to reduce 
clutter [5]. Zhao et al. report an approach in which the Markov 
chain Monte Carlo method is utilized for moving pedestrian 
detection [6]. In [7], occlusion is handled by training a color 
model for each person before occlusion, which is employed 
later to recognize occluded pedestrians. 

 

III. PROPOSED METHOD 
 

Briefly, the pedestrian detection task in the proposed 
method is performed as follows. The input image is scanned in 
different locations and scales. In each location and scale, a 
fixed size window (64×128 in the current implementation) is 
cropped from the input image and checked for the presence or 
absence of a pedestrian utilizing the following process:  
1) Segment features of the window are extracted (see 

segmentation for detail), 
2) The strong classifier, which is created in the learning 

process by combining the best pedestrian-specific 
features, is exploited to classify the window using its 
extracted features.  

The following subsections describe each step of the 
proposed method in detail.  

A. Segment Feature Definition 
The segment feature is defined as a structure containing the 

shape and the location of a region in an image. More precisely, 
segment feature k is a 64×128 binary matrix which is one 
inside and on the border of the kth region of the image and zero 
elsewhere. Consequently, each segment feature is a mid-level 
feature of the image because it contains a mid-level feature 
that is the region shape. Figure 3 shows some segment features 
of an image.  

B. Segmentation Process 
As mentioned above, the segment feature is generated by 

capturing the shape and the location of an image region. 
Therefore, a segmentation process is required to divide the 
input image into different regions (segments).  

Among the proposed segmentation methods in the literature, 
the method proposed in [9] is employed because of its desired 
properties:  
• Preserving the details in smooth areas while ignoring the 

details in textured regions, 
• Adjusting the segmentation scale via the input parameter 

k, 
• Accepting the color and gray scale images. 

The following steps describe the segmentation process: 
1) Each image pixel is considered as a region where it 

corresponds to a node (v in V) in the overall image graph 
of G(V, E). 

2) Neighboring pixels are connected by undirected edges (e 
in E). For each edge, a weight coefficient is computed 
according to dissimilarities among pixels. 

3) Similar regions (A and B) are merged together to form a 
larger region if the following condition is held: 
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where E is the graph edge set and for each node, and w((vi,vj)) 
is the weight between vertices vi and vj. Moreover, 
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Fig. 3. Illustration of some segment features, a) input image, b) fine 
segmentation result, c,d) two segment features of fine segments corresponding 
to head and leg, e) coarse segmentation result, f,g) two segment features of 
coarse segments corresponding to the whole body. 
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MST represents the minimum spanning tree of graph 
G(V,E). The value of k defines the sensitivity level of the 
segmentation algorithm (i.e., larger k is preferred for larger 
regions). Note, however, that k is not the minimum segment 
size; smaller segments are allowed when there is a sufficiently 
large difference among neighboring regions. 

In the pedestrian detection task, choosing a large k tends to 
segment the whole pedestrian body as one segment, but could 
generate incorrect segments when the pedestrian clothing is 
similar to the background. On the other hand, small values of k 
tend to capture different limbs, but at the cost of over 
segmenting (i.e., creating many segments for large limbs).  

To capture the overall body shape as well as the shape of 
each limb, the input image is segmented with a large and a 
small k values (coarse and fine segmentation).  Coarse and 
fine segments are used to generate the image segment features.  

C. Weak Classifier Creation 
After finding all the segment features in the training set, a 

weak classifier is generated using each segment features, 
which is defined as: 
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where Fi(j),θl,θh,p represent the value of feature i in training 
image j, low threshold, high threshold, and polarity value, 
respectively. Figure 4, depicts the process of creating feature 
vector Fi. θl,θj and p for each weak classifier are calculated 
using the following process: 
1) Feature vector Fi is sorted in the ascending order, 
2) The subsequence of Fi which produces the best 

classification result (contains the maximum ratio of 
positive or negative images) is found, 

3) The value of Fi at the beginning and the end of this 
sequence is assigned to θl and θh , respectively, 

4) p is assigned to one, if the subsequence contains the 
maximum ratio of positive images and to zero, otherwise. 

D. Boosting Process 
Because the best weak classifier can categorize only 76% of 

the training set accurately, the Adaboost method is employed 

to combine the best weak classifiers and create a strong 
classifier [8]. Unlike each weak classifier that may contain 
either the shape of one limb or the overall body shape, the 
strong classifier includes the combination of different limbs as 
well as the overall body shape. The strong classifier is defined 
as: 
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where, T represents the number of weak classifiers used for 
generating the strong classifier, and αi is the weight of weak 
classifier i obtained from the Adaboost algorithm.  

 
 

Fig. 4.  Proposed method for calculating the feature vector Fi(j). The left 
bottom image shows the result of intersecting segment i and the segment that 
has maximum intersection with that. The white area is the intersection part, the 
light gray area is the part of the intersecting segment that has no intersection 
with segment i, the dark gray area is the part of segment i that has no 
intersection. 
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E. Implementation 
Due to computational complexity and memory constraints, 

instead of creating weak classifiers for all segment features in 
the training set and combining them to generate a strong 
classifier, the following process is implemented: 
 
 
1) The training images are partitioned into 21 groups 

randomly, 
2) The segment features and the weak classifiers for each 

group are created, 
3) The best 1000 weak classifiers from each group is 

selected using the Adaboost algorithm, 
4) The strong classifier is generated employing the Adaboost 

method for the second time on the best 21000 weak 
classifiers (21 groups × 1000 classifiers per group) of the 
whole training set. 

Figure 5 illustrates the strong classifier obtained from the 
above process. 

 

IV. EXPERIMENTAL RESULTS 
 
Note that the experimental results are NOT REAL 

RESULTS obtained from the proposed method because the 
results were not ready while writing this paper.  

 
The performance of the method is evaluated on the INRIA 

dataset. INRIA dataset contains 1805 64×128 images of 
humans cropped from a varied set of personal photos and 1218 
person free images in the training set.  

The algorithm is implemented in C++ employing the 
OpenCV functions on a computer with an Intel Core 2, 6300 
@ 1.86 MHz CPU and 2GB RAM. 

Figure 6 shows the comparison between the detection result 
of the proposed method and the detection results of two state-
of-the-art methods in a Detection Error Tradeoff (DET) curve  

 

 
a b 

Fig. 5. Strong classifier illustration, a) positive part, b) negative part. 
 

 
on a log-log scale (i.e., miss rate (8) versus False Positive Per 
Window (FPPW)).   
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+
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Figure 6 shows that the proposed method outperforms the 

previous methods’ miss rate by about 1% at FPPW of 10-4. 
 
In Figure 7, some falsely detected windows are depicted. 

Note that most of the false negatives are due to the unusual 
human pose (e.g., riding bicycle), semi occlusions, or the 
extremely light or dark environments.  

Table 1 presents the processing time of the proposed 
method in different situations.  

 

V. CONCLUSION 
 

In this paper, a novel feature-based pedestrian detection 
approach is presented. Unlike the current state-of-the-art 
methods [2],[3], which utilize some low-level features (image 
gradients) as the basic features, a mid-level feature, segment 
feature,  is proposed that is capable of capturing more general 
image characteristics. To employ the combination of segment 
features, and also to make it computationally tractable, a two 
level boosting process is performed to create the final 
classifier.  

Experimental results show that the proposed method 
outperforms the current state-of-the-art methods (1% less 
miss-rate in FPPW of 10-4) in detection accuracy. However, its 
computational complexity demands some future works for 
real-time applications. 

 

 
Fig. 6.  Detection Error Tradeoff curve of the proposed method as well as two 
state-of-the-art methods. 
 



ENSC 803 COURSE TRANSACTIONS 
 
 
 

 

 

Fig.  7.  Examples of falsely categorized windows. The two top rows are false 
negative examples and the two bottom rows are false positive examples.  

 
TABLE  I 

 TIME COMPLEXITY OF THE PROPOSED METHOD (SECONDS) 
 

Image Size 
(pixel) 

Number of utilized weak classifiers (T in 
Equation 7) 

100 1000 10000 
320×240 8.5 10 93 
640×480 86 105 985 
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Multicasting JPEG2000 Images over MIMO
Systems

Mahin Torki and Atousa HajShirMohammdi

Abstract—Increasing demand for high-speed and efficient mul-
timedia transmission over wireless networks has driven tremen-
dous research on enhancing the performance of multimedia
communications over noisy channels. Multimedia applications
increasingly require efficient transmission of still and moving
images over wireless channels. In response to the rapidly in-
creasing demand of the data-rate requirements, of particular
importance is the so-called Multi-Input Multi-Output (MIMO)
antenna. In this paper, we exploit spatial multiplexing, diversity,
antenna selection, and Unequal Power Allocation (UPA) tech-
niques simultaneously to transmit progressive JPEG2000 images
over a MIMO downlink channel where communication occurs
from a multi-antenna base station to many multi-antenna mobile
terminals. We take advantage of the spatial diversity by utilizing
a joint decoding in the JPEG2000 decoder. The aim is to reduce
the average distortion among users. Simulation results show
that our proposed algorithms provide significant image quality
improvement when compared to schemes that do not consider
antenna selection or UPA.

I. INTRODUCTION

Real-time transmission of image and video content over
wireless channels is becoming very common in cellular net-
works. The ultimate goal of future-generation wireless com-
munications is to provide ubiquitous seamless connections
between mobile terminals such as personal digital assistants
and computer servers, so that users can enjoy high-quality
multimedia services at anytime without wires. Fundamental
physical challenges such as channel fading and interference,
however, have put strains on the radio resources, which makes
achieving reliable wireless communications difficult. Develop-
ment of Multi-Input Multi-Outputs (MIMO) systems has been
a great achievement toward overcoming this problem. These
systems provide high speed links while maintaining good
quality of service. MIMO systems have the following desirable
capabilities: increased bitrate if used in spatial multiplexing
systems, decreased bit error rate if used in diversity mode,
and extended transmission range by utilizing beamforming
methods [1]. On the other hand, JPEG2000 is the state-of-the-
art still image compression standard that outperforms other
image compression standards like JPEG [2].

In this paper, we consider multicasting of JPEG2000 images
over MIMO systems. The JPEG2000 standard generates a pro-
gressive bitstream with different scalable progressions, excel-
lent error resilience features, and region of interest processing.
The property of JPEG2000 focused upon in this paper is its

Manuscript received March , 2008; revised April 3, 2008.
The authors are with the School of Engineering Science, Simon Fraser

University, Burnaby, BC, V5A1S6 (e-mail: mta33@sfu.ca,atousah@sfu.ca)

“quality scalability”, which means as more elements of the bit-
stream are received, the quality will increase accordingly [2].
The aim of this paper is to present an antenna selection
algorithm which transmits JPEG2000 images efficiently over
a multiuser MIMO network, while making use of both spatial
multiplexing and diversity benefits of MIMO systems. Due
to the quality scalability of the JPEG2000 bitstreams, various
parts of the encoded bitstream differ in importance, and it
is crucial to assign the best channels in terms of Signal to
Interference and Noise Ratio (SINR) to the most important
parts in order to achieve the optimum distortion at the receiver.

Much research has been done considering optimized trans-
mission of images and videos in wireless networks [3], [4],
[5], [6], [7]. In [3] power efficient MPEG4-FGS video trans-
mission over MIMO-OFDM systems is discussed. In [4] an
unequal power allocation algorithm for JPEG transmission
over MIMO systems is proposed. [8] proposes an energy
efficient JPEG2000 image transmission system over point-to-
point wireless sensor networks. In this work, we consider
transmission of JPEG2000 images to multiple users over
MIMO channels.

The challenge of antenna selection in a multicast MIMO
system is because different users impose different transmitting
antenna orders, and the best antenna selection strategy for
one user may be the worst for another user. Our proposed
algorithm assigns sub-streams to transmitting antennas to
reduce the distortion of the received images for different users.
To ensure that all users receive the important parts of the data
through their best channels, the algorithm uses diversity and
sends the important parts of the bitstream through multiple
channels. Hence, the chance that users accurately receive the
important parts of the bitstream, increases and also, we may
use this extra information at the JPEG2000 decoder by jointly
decoding the multiple copies of the same codestream. It is
shown that applying antenna selection simultaneously for all
the users, decreases the maximum distortion in the received
images. Furthermore, wireless channels are subject to signal
degradations such as noise, interference and fading and due
to the nature of JPEG2000 coded bitstream, without adequate
data protection, any transmission errors that occur in the coded
image will be propagated to affect large image areas, causing
visible and often objectionable, image quality deterioration.
The JPEG2000 standard addresses the transmission error prob-
lem by including provisions for error resilience tools. Here we
use the “error resilience” feature of JPEG2000 to improve the
quality of received images.

The organization of this paper is as follows. In section II, we
present our system model. In section III, the proposed method
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is explained, and section IV provides simulation results for
investigating the performance of the proposed algorithm. Fi-
nally, section V discusses the results of the simulations.

II. SYSTEM DESCRIPTION

The system is modeled as a two user MIMO, in which both
users have the same requirements and have the same priority
for the base station. All the transmitters and receivers have the
same number of antennas, which we have chosen to be 4 in
this paper. The general model of the system is shown in Fig. 1,
with a description of different components given below.

A. Channel model

We assume that the channels between the base station and
different users have the same statistics. Each of these channels
is a 4 by 4 MIMO channel. The channel is assumed to be
Rayleigh flat fading. The channel matrix entries are i.i.d.
Gaussian complex random variables, with independent real
and imaginary parts, each with zero mean and variance 1/2.
We assume that the channel is known at the transmitter and
receiver. The noise is assumed to be AWGN with variance 1.
We use 4-QAM for modulating the bitstream. The channel is
slowly time varying and is assumed to be constant over every
T symbol intervals.

B. Transmitter

The transmitter consists of two parts. The first part is the
source encoder which converts the input images to compressed
bitstreams. In this paper, the input images to the system are
encoded using the JPEG2000 still image compression standard
in the quality progressive mode. To encode the raw image,
JPEG2000 first divides it into disjoint rectangular tiles. The
subband/wavelet transform is applied to each tile-component
to generate subbands, which are then divided into rectangular-
shaped precincts, and further divided into square-shaped code-
blocks. Each bitplane of a codeblock is then encoded by
an arithmetic encoder in three codingpasses. This provides
a progressive bitstream for each of the codeblocks. Coding
passes are then interleaved to create the scalable JPEG2000
bitstream. We enable error resilient feature of the JPEG2000
encoder by using the RESTART/ERTERM option. We have
used Kakadu as our JPEG2000 codec with 64×64 codeblocks
and 128× 128 precincts [9]. In all simulations, PPM markers
were utilized, and the header information throughout the
bitstream is separated and assumed to be transmitted error
free. At the receiver, headers are re-inserted at their original
location before JPEG2000 decoding.

The second part of the transmitter is the channel assignment
unit. In this unit, after the removal of headers, the raw
bitstream is divided into two equal length substreams, SS1

and SS2. Each substream is divides into non-overlapping
blocks of lengths 2T , where T is the number of symbols
for which we assume the channel to be constant, and the
number of bits per symbol for 4-QAM modulation is 2. Our
proposed channel assignment algorithm then runs on each of

these blocks independently. The total transmit power from all
the antennas during each symbol period is kept constant at
any given symbol interval. In effect, this unit determines the
substreams that are transmitted through each antenna and the
required power for transmitting them. It also determines how
the final bitstream should be composed from the substreams
that each user receives and sends this side information to
the users. This part will be explained in more detail in
section III-A.

C. Receiver

We have used a Minimum Mean Square Error (MMSE)
receiver to eliminate the problem faced by MIMO receivers
which is the presence of multi-stream interference. The MMSE
is a linear receiver (i.e., it separates the transmitted substreams
and then decodes each substream independently) [10].These
substreams are then passed to our modified JPEG2000 decoder
which will be discussed in section III-B.

III. PROPOSED METHOD

In this section, the channel assignment algorithm and our
proposed modified JPEG2000 decoding scheme are discussed.

A. Channel Assignment Algorithm

The channel assignment algorithm, calculates the post pro-
cessing Signal to Interference and Noise Ratios (SINR) for all
the receiving antennas of each user every T symbols [11].
Because we have used MMSE receiver, each transmitted sub-
stream will be decoded from its corresponding receiver. The
calculated SINRs determine the best transmitting antennas in
terms of post processing SINR for each user. This constitutes
the antenna selection order of each user. Based on the antenna
selection order requested by each user, the algorithm assigns
the antennas to substreams aiming at reducing the average
distortion among all users. The algorithm is based upon the
progressive nature of the JPEG2000 coded bitstream (i.e., the
first substream needs more protection and should be transmit-
ted through channels with the lower BERs). The challenge
of antenna selection when transmitting images to multiple
users will arise in cases that different users request different
transmitting antenna orders, and the best antenna selection
order for one user may result in great quality degradation in
another user.

The algorithm assumes that the total transmit power at
each symbol period is 4p. According to the antenna selection
orders requested by each user, the algorithm decides on one
of the following scenarios: i) Choose two best antennas and
send one copy of each substream with power 2p from each
of the selected antennas. The other two antennas are not
used for transmission. ii) Send two copies of each substream
transmitting from all four antennas with power p. iii) Send one
of the substreams with power 2p from one antenna and two
copies of the other substream from two other antennas with
power p. The fourth antenna is not used for transmission.

It should be noted that in cases where we send two copies
of the same substream from two transmitting antennas, the
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Fig. 1. System model for multicasting JPEG2000 images over MIMO channels

MMSE receiver will decode each copy separately and each
user will receive two copies of that substream, obviously
with different BERs. We call the copies transmitted over
the channels with higher and lower SINR, the main and the
secondary copy, respectively. The transmitter also lets each
user know which substream has been transmitted from each
antenna.

The channel assignment algorithm is summarized in Algo-
rithm 1, where SSk1 and SSk2 refer to the two copies of the
kth bitstream, k = 1, 2, and Aij refers to the jth best antenna
of user i, i = 1, 2, j = 1, . . . , 4.

B. Modified JPEG2000 decoder

In the original JPEG2000 decoder (in the
ERTERM/RESTART mode) if an error is detected in a
codingpass, all the remaining coding passes from the current
codeblock are discarded [9]. The modified JPEG2000 decoder,
however, takes advantage of the diversity in the received
data during the time intervals that more than one copy of
codestream is available. This is done by jointly decoding
the two different received copies of the original data. At
first, the decoder uses the main codestream to decode the
image. Once the decoder detects an error in a coding pass,
by employing Algorithm 2, the decoder tries to correct
the erroneous byte(s) by using the information contained in
the secondary codestream. If the decoder is successful in
correcting the damaged codingpass, it restarts its operation
from the beginning of the erroneous codingpass. Otherwise,
it operates normally. The modified JPEG2000 decoder is
summarized in Algorithm 2.

IV. SIMULATION RESULTS

In this section, we provide experimental results to inves-
tigate the performance of our proposed algorithms. Images

Algorithm 1 Channel Assignment Algorithm
for Every T symbols do

Calculate the post processing SINR for all the receiving
antennas of each user and sort the antennas based on their
corresponding SINRs .

if The two best antennas of each user match then
Power (SS1) = 2p
Power (SS2) = 2p
Transmit SS1 from A11

Transmit SS2 from A12

Do not transmit from remaining antennas
end if

if Only the best antennas of each user match then
Power (SS1) = 2p
Power (SS21) = p
Power (SS22) = p
Transmit SS1 from A11

Transmit SS21 from A12

Transmit SS22 from A22

Do not transmit from the remaining antenna
end if

if The best antennas of the two users are different then
Power (SS11) = p
Power (SS12) = p
Power (SS21) = p
Power (SS22) = p
CH11 ⇐ SS11

CH21 ⇐ SS12

Send SS21 and SS22 from the remaining antennas
end if

end for
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Algorithm 2 Modified JPEG2000 Decoder
for All the codingpasses in the codestream do

Decode the codingpass.
if Decoder declares occurrence of an error in the cod-
ingpass then

Find all the mismatches between the main and the
secondary codingpasses

for each mismatch do
Swap the corresponding values of the two code-
streams
Reinitialize the decoding from the start of the cod-
ingpass
if decoding is successful then

Break;
else

swap the values of the two codestreams again and
repeat the procedure with the next mismatch

end if
end for

end if
end for

are encoded with 4 different quality layers with the quality
progression option enabled in the JPEG2000 encoder. Also,
to take advantage of the error resilient feature of JPEG2000,
we enable the ERTERM/RESTART mode at the encoder. Con-
sequently, the decoding should be done in the error resilient
mode, as well. We assume that the channel is constant for
250 symbols to ensure that the slowly time varying condition
is satisfied [4]. The results shown here are for the 512× 512
Lena image with a source coding rate of 1.0 bpp.

We compare the performance of our proposed algorithms
with two more cases. The results are shown in Fig. 3.

In the first case, the image is encoded with 1.0 bpp and is
divided into 4 equal length substreams. We transmit the four
substreams according to the antenna selection order requested
by user 1. In effect, we are giving complete priority to the
needs of user 1 and we are applying no antenna selection
for user 2. We found the PSNR curves for User1 and User2,
labeled with “User1 based-U1” and “User1 based-U2”, respec-
tively. We also calculated the average PSNR for the two users,
labeled with“Ave U1 and U2” in the figure.

In the second case, the input image is encoded using only
0.5 bpp and is divided into two equal length substreams which
are sent according to our proposed algorithm. This results in
the same transmission time and power consumption as the
previous two cases for a fair comparison. We call our proposed
method, “Joint Antenna Assignment and Modified JPEG2000
Decoder” (JAAMD). Since we use different powers for trans-
mitting the substreams, the corresponding performance curve
is labeled as “UPA-JAAMD” in the figure, to signify the
Unequal Power Allocation employed here.

In the third case, we use our proposed method at the same
rate (0.5 bpp) with the difference that we always transmit from
all four antennas with equal power. We call this method “EPA-
JAAMD”, where EPA stands for Equal Power Allocation.

(a) (b)

(c) (d)
Fig. 2. Lena image results for different schemes at SNR=15 dB (a) Received
image by User 2 with antenna selection based on User1, 1.0 bpp, (b) Received
image by User 1 with antenna selection based on User1, 1.0 bpp (c) EPA-
JAAMD, 0.5 bpp, (d) UPA-JAAMD, 0.5 bpp
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Fig. 3. PSNR curves for different schemes

To show the visual quality of our proposed method, results
for Lena image transmitted with different algorithms at 15 dB
are shown in Fig. 2. Noticeable visual quality enhancement is
achieved through our proposed algorithms. As can be seen
from Fig. 3, our algorithm performs significantly better in
terms of PSNR in the SNR range of 0 − 30 dB compared
to the case we send the 1.0 bpp bitstream without antenna
selection or based on the required order of one of the users.
Simulation results show that for low SNR conditions, it is
more beneficial to send the more important parts of the coded
image with great protection, as these parts construct the main
part of the decoded image PSNR.
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V. CONCLUSION

In this paper, we presented an algorithm for multicasting of
JPEG2000 images over MIMO systems. According to different
antenna selection orders requested by different users, the
channel assignment unit decides to transmit the substreams
with different power levels from the antennas. The decoder
is modified such that, when two copies of a substream are
available, they are used jointly to decode the image, using
the error resilient feature of JPEG2000 decoder. The proposed
method, takes advantage of spatial multiplexing and diversity
in MIMO systems, while applying UPA. Simulation results
show that our algorithm provides a significant gain over other
presented schemes. Future research direction is to extend this
algorithm to more than two users.
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Abstract—This paper analyzes the throughput of 
symbol-by-symbol duration adaptation. Satisfying a 
certain symbol error probability (SEP) constraint, the 
channel gain thresholds are optimized to achieve 
maximum throughput. The results show that, with 
perfect channel information, symbol-by-symbol (SBS) 
duration adaptation achieves a significant throughput 
gain over frame-by-frame (FBF) adaptation schemes for 
fast fading channels – in the orders of magnitude. And 
also higher throughput gain can be achieved by applying 
more levels of duration to adapt wireless channels. On 
the other hand, if only imperfect channel information is 
available, the throughput gain is still promising, 
although the imperfect channel information has 
important impact on the performance of adaptive 
transmission. 

 
Index Terms—symbol rate adaptation, throughput 

 

I. INTRODUCTION 

HE increasing demand for voice, data and multimedia 
service propels the need for higher capacity and data 

rates for wireless communication. However, the radio 
spectrum is a limited resource, which is unable to provide an 
arbitrary amount of wireless channels or bandwidth. Thus 
improving the radio spectral efficiency is one of the most 
important methods to meet the growing need for 
communication capacity.  The spectral efficiency measures 
the amount of information bits transferred over a given 
bandwidth, and its unit is / /bit s Hz . If the channel 
bandwidth is fixed, increasing the transmission rate is 
equivalent to improving the spectral efficiency.  

To increase the symbol (bit) rates over wireless channels, 
many adaptation techniques have been proposed to deal with 
channel fading. Adaptive constellation size assigns a varied 
number of information bits to one transmitted symbol, so 
that higher information throughput can be achieved at the 
same symbol rate. Adaptive power control, which sends 
signals with power as low as possible in order to reduce 
multi-user interference and error probability, also leads to 
higher system throughput. In CDMA networks, the symbol 
duration can be adjusted by applying spreading codes with 
different code lengths. This method is  symbol duration 

adaptation which can improve the spectral efficiency for 
CDMA systems. 

Wireless channel fading is a phenomenon where 
instantaneous channel gains fluctuations are caused by 
multi-path propagation. Due to the presence of reflectors in 
wireless communication environments, the signals arrive at 
the receiver with multiple copies, and each suffers different 
time delays, phase shifts, and amplitude attenuations. The 
superposition of these copies may cause either constructive 
or deconstructive interference to the received signal power. 
The changing rate of amplitude attenuation and phase shift is 
related to the velocity of mobiles and reflectors around the 
mobiles. A moving mobile experiences a frequency shift 
away from its carrier frequency, which is known as Doppler 
shift. Doppler shift is measured as: 

,c
vf f
c

Δ =           (1) 

where cf  is the carrier frequency, v is the velocity of the 
mobile, and c is the propagation speed of the carrier, which 
is the speed of electromagnetic waves 8(3 10 / )m s× . As 
shown in Fig. 1[1], the fluctuation of wireless channel gain is 
more or less periodical, where period GT is approximately 

1 ,
2G

D
T

f
=           (2) 

where Df is the maximum Doppler shift.  
To maintain the quality of communication, signals must 

be transmitted with sufficient power and a under certain rate 
to obtain adequate signal to noise ratios (SNR) on received 
signals which have suffered fading. Satisfying a certain error 
probability requirement, the symbol duration (rate) 
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Fig. 1 Time-varying fading channel gain 
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adaptation is to track the channel gain fluctuation and send 
signals with a rate as high as possible so that more 
information can be transmitted.  

Conventionally, duration adaptation adjusts the symbol 
duration (rate) only at the beginning of each frame, which is 
identified as frame-by-frame (FBF) duration adaptation in 
this paper. When the mobile speed is relatively high, the 
channel fluctuation period, GT , is close to, or even less than 
the frame duration. For example, suppose the frame duration 
is 10ms, if the mobile is moving at a speed of 36 km/h, and 
the carrier frequency is 1.5GHz, by equation (2), the 

10GT ms= as well. In this case,  the signals suffer one or 
several periods of channel fluctuation. Thus, the symbol 
duration adjustment is not able to track the channel gain 
varying but can only take the average channel gain into 
account. Therefore, for fast time-varying channels, the FBF 
duration adaptation is not beneficial to combating fading[2]. 

Compared to FBF duration adaptation, a 
symbol-by-symbol (SBS) adaptation scheme[2] is much 
more efficient for dealing with fast time-varying channels. 
SBS duration adaptation changes the symbol rate for each 
symbol instead of for each frame, providing the capability to 
adapt the channel fluctuation precisely and yield much 
higher average transmission rates and spectral efficiencies.  

In order to perform symbol duration adaptation, or more 
generally, to perform any kind of adaptive transmission, the 
channel information, often called as channel state 
information (CSI), must be known by both the transmitter 
side and the receiver side. The channel gain, which is the 
CSI needed for symbol duration adaptation, is estimated by 
the receiver and sent back to the transmitter through a 
feedback channel. The process of estimation and feedback 
introduce time delays , and the time delays make the CSI 
used by the transmitter outdated. So the transmitter must 
predict the current channel gain from the past estimation. 
The imperfection of an outdated CSI has a significant impact 
on adaptation performance[3]. 

This paper analyzes the throughput gain of the SBS 
duration adaptation over the FBF method. In section II, the 
SBS scheme is introduced, and its throughput gain is 
analyzed in section III. An essential analysis result of the 
outdated CSI impact is shown in section IV. 

 
II. SYMBOL BY SYMBOL DURATION ADAPTATION 

In Direct Sequence CDMA (DS-CDMA) networks, the 
baseband information signals are multiplied by the wideband 
code signal to spread the signal spectrum[4]. The 
spread-spectrum signals are then modulated and sent 
through the wireless channel. On the receiver side, the 

received signals need to be demodulated and also de-spread 
to recover the baseband information signal. This process is 
named spread-spectrum because, multiplied by the direct 
sequence spreading code, the outcome signals occupy a 
much larger bandwidth than the original baseband 
information signals. 

CDMA chip duration, CT , is defined as the bit interval of 
the wideband direct sequence codes, while the bit interval of 
the information codes is denoted as bT . The ratio of the two 
is called the spreading gain PG : 

,C
P

b

T
G

T
=                              (3) 

The duration (rate) adaptation is the method of using a set 
of spreading codes with different code lengths to adjust the 
symbol transmission rate. With fixed chip duration CT , 
multiplied by different length spreading code, the resulting 
spread-spectrum symbols have different symbol duration 
(rate). 

The symbol by symbol duration adaptation employs 
orthogonal varied Spread Factor (OVSF) code sequence sets, 
in which the codes have different lengths and are shift 
orthogonal to each other. Suppose { }1 2 3, , , , NS C C C C= "  is 
an OVSF code sequence set, then S has the following 
properties:  
1) Each term of the code sequence takes a value of 1 or -1. 
2) The code sequences have the lengths of a power of 2 (i.e., 
if the length of code sequence, iC ,is denoted as iC , then 

1
12i

iC C−= ). 
3) All sequences are shift orthogonal to each other. 

Shift orthogonality is defined as that code sequence, 
U ,of length, n, and code sequence V of length nL are shift 
orthogonal with the length n if and only if 

[ ] [ ]
1

0,
n

k
U k V nl k

=
+ =∑                         (4) 

for each 0,1,2, , 1l L= −" [2]. 
The advantage of applying an OVSF code sequence set 

in the symbol duration adaptation system is that the receivers 
can determine which code sequence should be used to 
de-spread each received symbol without any message from 
the transmitters. By correlating the received symbols with 
each sequence of the OVSF code set, the receivers determine 
that the sequence with non-zero outcome is the one which 
the transmitter used for spreading the current symbol. This 
advantage is crucial in symbol by symbol duration 
adaptation because extra messages are avoided. Since the 
code sequences used for each information symbols are 
different, if the messages are needed by receivers to choose 
the right sequences, an extra message must be sent by the 
transmitters for each symbol. Obviously, those additional 
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messages occupy a large proportion of channel transmission 
time and decrease the channel information throughput and 
spectral efficiency as well. 
 

III. THE THROUGHPUT OF SYMBOL BY SYMBOL 
DURATION ADAPTATION 

As introduced in section II, the symbol by symbol 
duration adaptation is performed by applying a set of OVSF 
code sequence sets. By using the OVSF sequence set: 

   { }1 2 3, , , , NS C C C C= " ,  
the transmitters sends symbols with a set of discrete rates: 

   { }1 2, , , ,Nr r r"  

where 1
i

i C
r

C T
= and also 12i ir r += .  

Hence, the discrete rate set actually is: 

1 1 1
1 1, , , , ,

2 4 2N
r r r

r
−

⎧ ⎫
⎨ ⎬
⎩ ⎭

"  

The transmission rate is adjusted in accordance with the 
wireless channel gain, denoted as α . In this section, the 
instantaneous channel gain is assumed to be known for both 
the transmitter and receiver sides, (i.e., perfect CSI is 
known).  

As shown in Fig 2, the range of fading power gain, 2α , 
is divided to N regions with N-1 thresholds 
{ }1, 2, 1,, Nζ ζ ζ −" . The symbols are sent with the rate, 

ir ,when the power gain satisfies 2
1i iζ α ζ− ≤ < . Then the 

average rate is: 

( )2

1
1

,
i

i

N

s i
i

r r f x dx
ζ

α
ζ −

=
= ∑ ∫                           (5) 

where ( )2f xα is probability distribution of channel power 
gain, 2α , and 0 0ζ = , Nζ = ∞ .If the symbol error 
probability of the information bits is function ( )h γ , where 
γ is the signal-to-noise ratio (SNR) of the information bits, 
the average error probability with the symbol duration 
adaptation is: 

( )

( )

2

1

2

1

01

1

( )

,

i

i

i

i

N

i
ii

N

i
i

Pxr h f x dx
N r

SEP

r f x dx

ζ

α
ζ

ζ

α
ζ

−

−

=

=

=

∑ ∫

∑ ∫
                      (6) 

where P is the transmission power, and 0N is the power 
spectral density of the additive white Gaussian noise. 
Satisfying an error probability constraint, SEP ε≤ , an 
optimal threshold set is required to achieve a maximal 
throughput(i.e., maximal average rate sr ). Thus, the 
optimization is formulated as follows:  

 
Fig.2 Channel Power Thresholds for Symbol Rate Adaptation 
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To compare the throughputs between SBS and FBF 
duration adaptation, throughput gain is defined as the ratio of 
their average rates: 

,S

F

r
R

r
=              (8) 

In this paper, the channel is modeled as a Rayleigh fading 
channel (i.e., the normalized fading power gain 2α has an 
exponential distribution): 

 ( ) ( )2 exp , 0f x x x
α

= − >          (9) 

To show the performance of SBS duration adaptation, let 
BFSK (binary frequency shifting key) modulation be the 
example. For BFSK, the error probability function is: 

1( ) exp ,
2 2

h γγ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

                      (10) 

where γ is the signal-to-noise ratio (SNR) of the information 
bits. Substitute equation (9), (10) into (7), and the maximum 
average symbol rate is: 

( )
1 2, 1

1
, , 1
max exp ,

i

N
i
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r r x dx
ζ
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The average symbol rate of FBF duration adaptation for 
BFSK has been derived by[5]: 

0

,
1( 2)

F

Pr
N

ε

=
−

                        (12) 

Combined with equation (11) and (12), the throughput 
gain (8) can be numerically computed and the result is 

shown in Fig.3. The figure indicates that the throughput gain 

1ζ 2ζ 3ζ 1Nζ −

( ) 2a t
1r 2r 3r Nr… 

… ∞
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 Fig. 3   Throughput Gain of BFSK 
is achieved by SBS and the gain increases in orders of 
magnitude as the error constrain, ε , decreases.  

The number of code sequences applied in adaptation is 
also interesting and the simulation results are also shown in 
Fig. 3. The results show that the more sequences used in 
adaptation, the higher throughput gain achieved. This result 
agrees with intuition and the reason for it is that the system 
can adapt the channel more precisely by applying more 
levels of transmission rates, while the cost must be paid for 
the increasing system complexity. 

 
IV IMPACT OF IMPERFECT CHANNEL 

INFORMATION ONTHROUGHPUT GAIN 
Reference [3]has presented the quantitative analysis of 

the throughput gain with the outdated channel estimation, 
and some essential results are given here. 

The wireless channel is modeled as an isotropic 
scattering channel[3], in which channel gain, ( )a t ,is 
assumed to be an ergodic zero-mean complex random 
process with autocorrelation: 

 ( ) ( ) ( ) ( )2*
0 2 ,  , ,DE a t a t E a t J f tτ π τ τ⎡ ⎤⎡ ⎤+ = ∀⎣ ⎦ ⎣ ⎦

      (13) 

where 0J  is zero-order Bessel function of the first kind. The 
model implies that ( )a t is a circular process as well[6]. 

( ) ( ) 0,  , ,E a t a t tτ τ+ = ∀⎡ ⎤⎣ ⎦                        (14) 

As the transmission power is denoted as P , at time, t, the 
received signal power is ( ) 2P a t and the signal-to-noise 
ratio (SNR) is 

 

( )
( )( )

2

2
0

,
P a t

SNR
N r a t

=                       (15) 

where ( )( )2
r a t is the symbol rate when the power gain is 

( ) 2
a t , as ( )r i denotes the symbol rate adaptation policy. To 

simplify the analysis, a rudimentary linear policy is 
employed: 

( )( ) ( )2 2
,r a t qP a t=                      (16) 

where  q is a constant coefficient that needs to be 
determined.  

As described in introduction, the transmitters can only 
obtain the delayed channel estimation and must predict the 
current channel power gain from the outdated channel 
estimation. Let ( ) 2

â t denote the estimation of channel 
power gain at time, t, ( ) 2

a t . Suppose the system has time 
delay, τ ,between the estimation at the receiver side and rate 
adjustment at the transmitter side, the channel power gain at 
time, t τ+ ,is denoted as ( ) 2

a t τ+ and its prediction based 
on ( ) 2

â t is ( ) 2
â t τ+ .Hence, at time, t τ+ , the symbol 

rate is: 

( )( ) ( )2 2ˆ ˆ ,r a t qP a tτ τ+ = +                      (17) 

and the SNR is 

( )
( )( )

2

2
0

,
ˆt

P a t
SNR

N r a tτ

τ

τ+

+
=

+
                      (18) 

The average symbol rate is 

( )( )2
,sr E r a t⎡ ⎤= ⎢ ⎥⎣ ⎦
                     (19) 

 
and average error probability is 

 

( )( ) ( )
( )( )

( )( )

2
2

2
0

2

ˆ
ˆ

,

P a t
E r a t h

N r a t
SEP

E r a t

τ
τ

τ

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟

+⎢ ⎥⎜ ⎟
+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=

⎡ ⎤
⎢ ⎥⎣ ⎦

   (20) 

Where ( )h i denotes the symbol error probability of the 
information bits. 

The optimal q is determined by maximizing the average 
rate, sr ,while the average error probability, SEP ε≤ , where 
ε is the fidelity constraint of error probability. In order to 
solve the optimization problem, the relation between 
( ) 2

a t τ+ and ( ) 2
â t τ+ must be derived. As ( )a t and its 

estimation error, ( )Va t ,are modeled as statistically 
independent and Gaussian processes, and ( )â t and 
( )a t τ+ are assumed to be jointly Gaussian, ( ) 2

a t τ+ and 
( ) 2

â t τ+ are also joint Gaussian, form a zero-mean 
complex Gaussian random vector[3]. The average rate is 

( ) ( )( )2
,sr qP E a tτ= ϒ                     (21) 

where  

 ( )
( )( )

( )( ) ( )( ) ( )( )
2

2
02 2

2 ,D

v

E a t
J f

E a t E a t
τ π τϒ =

+
    (22) 

Let BFSK be the example, so 
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Fig. 4   Throughput Gain with Imperfect CSI 
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q is optimized by solving 
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Then the throughput again for BFSK is  

( )0
12 1 ,

2
s

F

rR N q
r

τ
ε

⎛ ⎞= = ϒ −⎜ ⎟
⎝ ⎠

                     (24) 

The numerical computation results are shown in Fig.4. In 
the figure, the top solid line is the ideal gain when perfect 
CSI is assumed to be known. Other curves show that the 
throughput gains are degraded while ( )τϒ decreases. 
Shown in the equations (22) and (13), ( )τϒ is linearly 
related to the squared autocorrelation function of channel 
gain, ( )a t , and it well demonstrates the imperfection of the 
CSI from the time delay,τ . However, with imperfect CSI, 
the SBS duration adaptation still shows promising 
throughput gain over the FBF scheme. 
 

V. CONCLUSION AND FUTURE WORK  

In this paper, the throughput gain of symbol-by-symbol 
duration adaptation over frame-by-frame duration 
adaptation is analyzed. The results show, when ideal channel 
information is available, that SBS adaptation achieves 
significant throughput gain and improves the channel 
spectral efficiency remarkably.  Even with outdated channel 
information, employing a rudimentary adaptation policy and 
basic prediction scheme, SBS adaptation still has promising 

performance. Future research will develop more precise 
estimation-feedback-prediction schemes and adaptation 
policies to deal with the imperfect channel information. 
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