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Analysis of Swath Bathymetry Sonar Accuracy
John S. Bird, Member, IEEE, and Geoff K. Mullins

Abstract—The practical limitations of many bottom mapping
sonars lie in their ability to accurately estimate the angle of
arrival. This paper addresses the accuracy of angle estimation
when employed to determine the location of an extended target
such as the bottom. A Gaussian model is assumed for the bottom
backscatter and the corresponding Cramer–Rao lower bound for
the variance of the angle estimate is determined for multi-element
linear arrays. The paper focuses on determining the performance
of high-resolution swath bathymetry sonars and, therefore, con-
centrates on the ability to determine bottom location with short
pulses. Two error mechanisms, footprint shift and uncorrelated
noise, are identified as important contributors to measurement
errors. The two-element interferometric sonar configuration is
investigated in detail. It is shown through the use of probability
distributions, the Cramer–Rao bound, and simulation that it is
difficult to get a good estimate of performance through simulation
alone. Performance enhancement through pre-estimation and
post-estimation averaging of multiple snapshots and changes in
performance with pulse length and pulse rise time are also con-
sidered. Bottom estimation performance employing multi-element
arrays is compared and contrasted with that of the two-element
interferometric array. It is determined that there is little benefit
associated with the multi-element array in terms of angle esti-
mation performance alone. However, when other considerations
such as angle ambiguities, multiple angles of arrival, and physical
shortcomings associated with practical arrays are taken into
account, the multi-element array is favored.

Index Terms—Bottom estimation, footprint shift, interfero-
metric sonar, swath bathymetry.

I. INTRODUCTION

MANY sonars employed for bottom mapping use some
form of angle estimation to determine the location of

the bottom. The range to the bottom is known from the time of
flight of the acoustic pulse. The direction to the bottom for a par-
ticular time is estimated from the backscatter signals received
on an array of acoustic elements. The simplest form of these
swath bathymetry sonars uses the phase difference between two
acoustic elements separated by a small distance to determine
the angle of arrival (AOA). These sonars are known as interfer-
ometric sonars and the history of their development is recorded
in [1], [2], and associated references.

Interferometric sonars, however, do not work well in situa-
tions where backscatter is received from multiple angles at the
same time, because with two elements, it is possible to estimate
only one angle. Multi-angle swath bathymetry (MASB) sonars
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were developed to work in more complex environments such
as shallow water where acoustic multipath signals are expected.
These sonars use multiple array elements to resolve multiple an-
gles of arrival [3], [4]. MASB systems have certain advantages
when compared to multibeam systems, which include inherent
colocation of bathymetry with sidescan imagery and crosstrack
resolution determined by pulse length rather that beamwidth,
which in turn allows fewer transducer elements and channels to
be used. Disadvantages include lower resolution near nadir and
less ability to resolve complex target geometries.

In applications suited to the MASB configuration, the issue
of angle estimation accuracy arises. Lurton [5] addresses this
problem for two-element arrays where he introduces the concept
of footprint shift as a mechanism of angle estimation errors. In
this paper, we extend the analysis to include multiple-element
arrays and multiple snapshots of the array signals and thereby
address the performance of MASB systems. The performance
of the two-element interferometric sonar configuration is also
covered in detail because previous results did not include spe-
cific details about the difficulty of evaluating angle estimation
performance. Also included in the analysis is the performance
associated with a practical pulse shape that includes not only
the effect of pulse length but also pulse rise times. It is shown
through simulation and analysis that the Cramer–Rao bound is a
valuable tool for predicting the performance of interferometric
and MASB sonar systems. The analysis also shows that for prac-
tical pulse shapes, there is little difference in terms of angle esti-
mation accuracy between a multiple-element array and a two-el-
ement array with a spacing equal to the outside spacing of the
multiple-element array. However, other issues are outlined that
heavily favor the use of a multiple-element array.

The analysis begins in Section II wherein the Cramer–Rao
lower bound (CRLB) for estimating the AOA of bottom
backscatter with a multiple-element array is developed, as-
suming that the backscatter can be modeled as a circular
symmetric Gaussian signal. This assumption was made for the
signal model for four reasons. First, there is evidence that some
backscatter is of this type in [6]. Second, other authors [5]
have used this model, and therefore, results can be compared.
Third, the analysis is possible with this model, and it is not as
yet with other models. Finally, the model allows us to develop
trends so that even if it does not hold in a specific case, the
trends uncovered might. In Section III, the two-element inter-
ferometric sonar is analyzed in detail with regard to its ability
to estimate the AOA. The probability density of the angle is
presented along with analysis and simulations that show that
the true variance of the angle estimate is very difficult to obtain
through simulation. Hence, simulation without supporting
analysis is not sufficient to evaluate performance. Furthermore,
in Section III, an analysis of the two-element array is extended

0364-9059/$20.00 © 2005 IEEE



BIRD AND MULLINS: ANALYSIS OF SWATH BATHYMETRY SONAR ACCURACY 373

to include multiple snapshots and two methods of processing
the snapshots: pre-estimation averaging and post-estimation
averaging. It is shown that pre-estimation averaging outper-
forms post-estimation averaging for the model given, but that
post-estimation averaging is more robust to domination by a
few strong scatterers.

In Section IV, the performance gain of multiple-element ar-
rays is given with respect to the effects of both footprint shift and
uncorrelated noise. It is shown that because of the decorrelation
effect of footprint shift, the gain achieved over this mechanism
for errors is not as great as the gain achieved over uncorrelated
noise.

Section V contains a general discussion and conclusions. The
performance of three arrays is compared and contrasted. The
arrays consist of a two-element array with spacing (where

is the wavelength), a six-element array with element spacing
, and another two-element array with spacing equal to the

spacing of the outside elements of the six-element array, namely
. It is determined that for practical pulse shapes, the three

arrays are relatively similar in performance against the footprint
shift effect, while the latter two arrays perform better against un-
correlated noise for estimating the AOA and, hence, the bottom
location.

The general conclusion of the paper is that multiple-element
arrays and two-element arrays with the same outside spacing
perform similarly in terms of angle estimation, but the multiple-
element array is preferred when multiple angles of arrival, angle
ambiguities, and array imperfections are issues, as is usually the
case.

II. DEVELOPMENT OF THE CRAMER–RAO LOWER BOUND

In this section, the CRLB for estimating the AOA of bottom
returns from a linear array of elements is determined. The
development includes some ideas found in [5] and [6]. The re-
sulting model is that of a complex Gaussian signal in complex
Gaussian noise for which the CRLB can be determined from the
covariance matrix as follows [7]:

trace (1)

where is the th entry in the Fisher information matrix,
each is a parameter to be estimated, is the covariance ma-
trix, and is the number of independent snapshots taken with
the array.

For the problem at hand, it is assumed that the only unknown
parameter is the AOA, and therefore, the Fisher information ma-
trix is a scalar. Hence, the CRLB for the variance of any unbi-
ased estimator of the arrival angle is

CRLB (2)

In (2), is the electrical arrival angle (i.e., the phase differ-
ence from array element to array element) from which the phys-
ical arrival angle is determined through the relation

(3)

where is the wavelength and is the spacing between array
elements. The CRLB for the physical angle can be deter-

Fig. 1. Geometry for determining distance to acoustic array elements.

Fig. 2. Geometry for determining the footprint shift.

mined from the CRLB for through a simple transformation
[7, p. 929].

The first step in obtaining the bound is to derive the form of
the correlation matrix . For an array of receive elements, the
correlation matrix is defined as

...
. . .

... (4)

where and is the narrowband com-
plex signal received at element . Therefore, to determine for
the bottom estimation problem, must be found for ar-
bitrary array elements and .

Assuming that the signal from a particular set of bottom scat-
ters is received at elements and , the following relations hold:

(5)

where the integrals are delimited by the signal pulse, is the
scattering function of the bottom scatterers, which is assumed to
be complex Gaussian with ,
and and are defined in Fig. 1.

With the help of Fig. 2, the following expressions for
and are obtained consistent with the bottom shift model
of [5]

(6)

where is the signal amplitude and is the pulse shape
on the bottom. It is assumed that the pulse is normalized so that

. In other words, is made up of scatters over
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the range , where is the pulse length
on the bottom. is made up of scatterers over the range

. For each and , the integral sums over these
ranges of . The variable represents the shift on the bottom
resulting from element receiving signals from a slightly dif-
ferent part of the bottom than element . For this geometry,
is derived in Appendix I and is well approximated by

(7)

where is the element separation, is defined in Fig. 2, and
is the tilt of the array from the horizontal, and is the physical
AOA relative broadside the array.

The pulse length on the bottom represented by is

(8)

With these definitions, the signals received on the two elements
and at the same time are

(9)

Utilizing the form of the correlation function for , the
corresponding correlation of and is given by

(10)

From the geometry in Fig. 1

(11)

So that

(12)

Following [6] and expanding around as
defined in Fig. 2 and retaining the first two terms

(13)

and substituting (13) into (12) results in

(14)

Recognizing that the exponential term in the above integral
leads to the baseline decorrelation described in [6] and that this

contribution to decorrelation is small over the range of con-
sidered for short pulses, the term is ignored and (14) can be sim-
plified to

(15)

Again, considering only the case of short pulses, the change
in with can be ignored, and the integral can be written as
the correlation between a time-delayed version of the pulse and
itself. Specifically

(16)

where , the nonnormalized pulse shape, is expressed as a
function of time and

(17)

where is the electrical angle defined by (3).
Therefore,

(18)

where in (15) is , and it is recognized that is
defined by the difference (i.e., .

Therefore, the correlation matrix of the signal received at the
elements of the array (illustrated here by a 3 3 matrix for a
three-element array) is

(19)

where is defined as the variance of the complex Gaussian
amplitude of the signal, namely .

The complete correlation matrix is obtained by adding the
diagonal matrix associated with the uncorrelated noise from el-
ement to element, and therefore,

(20)

where is the noise correlation matrix with diagonal compo-
nents .
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Defining the signal-to-noise ratio (SNR) as , the cor-
relation matrix can be rewritten as

(21)

where is the correlation coefficient associated with the noise,
namely

(22)

From the correlation matrix , it is evident that uncorrelated
noise from element to element has a different effect on perfor-
mance than footprint shift. Specifically, the uncorrelated noise
results in correlation coefficient , which is the same for all
pairs of elements. On the other hand, the correlation coefficient
for footprint shift is dependent on the element pair spacing. The
net result is that pairs with larger spacing are less correlated,
and therefore, the incremental increase in angle estimation per-
formance for additional elements drops off (discussed later in
Section IV).

Now that the correlation matrix is determined, what remains
is to determine a specific function for . For the results gen-
erated in this paper, a signal pulse with an exponential rise and
fall is used as this is a good representation of practical sonar
pulses. The pulse has the form

(23)

where is the time the pulse starts to decay, is the unit
step function, and is the inverse of the time constant. As
increases, the pulse approaches a square pulse of duration .
When (23) is applied to obtain , the following result is
obtained:

(24)

where

(25)

and is the electrical angle between the closest elements of the
array.

To determine the CRLB, the derivative of each term in the
correlation matrix with respect to the electrical angle is re-
quired. Considering an arbitrary off-diagonal term, the deriva-
tive is

(26)

where

(27)

for .

For a square pulse (i.e., )

(28)

and

(29)

For the exponential pulse shape is minimized if is
large and the pulse is tending toward a square pulse. Further-
more, is a maximum for the square pulse so the closest
the relative amplitudes of the two terms in the derivative in (26)
can come is

(30)

where is the number of carrier cycles in the square
pulse or the number of carrier cycles in the exponential pulse
before it starts to decay. Since the largest value that can be is

where is the number of elements in the array, and the
largest that can be is , the ratio is guaranteed to be larger than
an order of magnitude if

(31)

This inequality holds for all the pulse lengths and array sizes
considered in this paper, and therefore, the derivative term in-
volving can be neglected, hence, the off-diagonal terms
are approximated by

(32)

With the correlation matrix and its derivative defined, the
CRLB for the variance of an unbiased estimate of the electrical
angle can now be determined. In the next section, the problem
of bottom estimation with a two-element array is investigated in
detail because these results can be extrapolated to the discussion
of the multiple-element problem in Section IV.

III. TWO-ELEMENT ARRAY AND BOTTOM ESTIMATION

In this section, the accuracy of angle estimation for deter-
mining the bottom position is determined for a two-element
array. The CRLB for bottom estimation with a two-element
array is derived and then compared with simulation results. The
differences between the bound and the simulation results are de-
scribed and explained in the context of measurement accuracy.
It is shown that determining the variance of angle estimation es-
timates is not as straightforward as it seems.

A. CRLB for a Two-Element Array

For a two-element array, the CRLB takes on a fairly simple
form as there is only one set of off-diagonal elements in the cor-
relation matrix. Hence, the lack of correlation due to footprint
shift can be equated to an equivalent SNR. Specifically, the cor-
relation matrix is

(33)
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Applying (1) and (2) and neglecting the dependence of
on when obtaining the derivative as suggested by (32), the
CRLB for the electrical angle is

(34)

If the product is treated as a single effective corre-
lation , an effective signal-to-noise ratio ( ) is obtained
through the relation

(35)

The CRLB then becomes

(36)

For high effective SNR (say above 10), the CRLB can be ap-
proximated by

(37)

Further, for high effective SNR

(38)

where and are defined using (35) and substi-
tuting and for , respectively. Hence, for high ,
the effective SNR is governed by , which is now de-
noted as for notational simplification, therefore,

large (39)

Equation (39) is valid, of course, only if is large, too,
but not as large as . Specifically, from (28) for a square
pulse and (35) and noting that

(40)

For to be large, it is required that

(41)

So (39) is valid only when the pulse length measured in car-
rier cycles is very much larger than the spacing measured in
wavelength. If this condition is true and the signal-to-noise ratio

increases, the CRLB limits at the level . This
limit for square pulses is

square pulse (42)

Fig. 3 illustrates the behavior of the two-element CRLB for in-
creasing SNR, a 50-cycle pulse, and an electrical angle of 60 .
For this figure, the value of for the exponential pulse, de-
scribing the rise time, was equated to the exponential envelope
of an underdamped second-order circuit

(43)

where it is assumed that the operating frequency is the reso-
nant frequency of the second-order circuit and is the quality
factor. This value of means that the pulse reaches 95.7% of its

Fig. 3. The two-element CRLB expressed as log CRLB , where
CRLB has the unit of radians, as a function of SNR. The pulse length
is 50 cycles, the frequency is 100 kHz, and the electrical angle is 60 . The
dash–dot line is the CRLB for uncorrelated noise alone. The dashed lines are
the limits imposed by footprint shift in the absence of uncorrelated noise for
pulses with q’s of 0.1, 0.3, 1, 3, and 10, top to bottom. The solid thin line is
the limit for a square pulse. The thick solid lines are the associated CRLBs for
both uncorrelated noise and footprint shift together.

maximum value within cycles of the carrier. As decreases,
the exponential pulse approaches a square envelope and the re-
sulting CRLB matches that of a square pulse, which in the limit
for high SNR, is represented by the thin solid line.

This figure shows the CRLB decreasing for increasing SNR
(thin dash-dot line). However, once the SNR reaches the point
associated with the footprint shift, namely , the CRLB
plateaus and no longer decreases with increasing SNR. The
plateau level is described by the dashed thin lines for various
values of describing the rise time of the 50-cycle pulse. By
gradually blurring both the leading and trailing edges of the
pulse (i.e., higher ), the effect of the footprint shift is reduced,
and therefore, the plateau is lower. But nevertheless, according
to the CRLB, the angle estimation ability limits at that associ-
ated with regardless of further decreases in .

Fig. 4 illustrates the behavior of the CRLB as a function of
the electrical angle for given signal-to-noise ratios and a .
The major feature of this plot is that the CRLB decreases as
the electrical angle approaches zero (i.e., signal is coming from
broadside). For this angle, there is no footprint shift noise (i.e.,

), so the CRLB is determined by only. Off
broadside, the CRLB is determined by both and ,
assuming the value associated with the lowest if there is a large
difference. For example, at low (e.g., the 10 dB curve)
the CRLB is determined by because it is much lower than

and the CRLB is independent of the electrical angle. The
thin solid line is the CRLB for a 50-cycle square pulse with no
noise present (i.e., ) and is shown for reference.

The major conclusion from this analysis of the CRLB for a
two-element array is that footprint shift limits how well one can
expect to estimate the electrical angle and, hence, the arrival
angle. This limit decreases as the pulse length increases or the

increases, but these increases tend to decrease the resolution
along the bottom.
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Fig. 4. The two-element CRLB expressed as log CRLB , where
CRLB has the units of radians, as a function of electrical angle. The pulse
length is 50 cycles, the frequency is 100 kHz, and the q is 3. The dash–dot lines
are the CRLBs for uncorrelated noise alone for signal-to-noise ratios of 10, 20,
30, 40, 50, 60, and 70 dB, top to bottom. (The 10 dB dash–dot line is hidden
behind the solid line.) The thin solid line is the footprint shift limit for a square
pulse in the absence of uncorrelated noise. The thick solid lines are the CRLBs
for uncorrelated noise and footprint shift together for the associated SNR.

The next step in establishing the accuracy of angle measure-
ments is to determine if the CRLB is actually a good represen-
tation of how well the angle can be determined. The CRLB is a
bound on the variance of an unbiased estimator, but there is no
guarantee that the bound can actually be attained. Angle estima-
tion is intrinsically nonlinear, and therefore, establishing close-
ness to the CRLB is difficult especially for low sample support.
Bottom estimation must be accomplished with a few samples to
maintain resolution, and therefore, asymptotic closeness to the
CRLB is of little use even if it can be proven analytically.

One indication that the CRLB might be a reasonable base to
work from is shown by comparing the bound with simulation re-
sults. This procedure involves programming a simulator to pro-
duce the same signal statistics as the model suggests and de-
termining the sample variance of the estimator and comparing
that to the CRLB. This procedure works if it can be established
that the sample variance is actually a good representation of the
real variance of the estimator. Usually, a certain large number
of trials (for example 100 as employed in [5]) are performed
in hopes that the variance will be well estimated. However, the
goodness of the variance estimator depends to a large degree on
the underlying probability density of the angle estimations. In
what follows, it is shown that for a single snapshot of a two-el-
ement array, the sample variance is typically a poor representa-
tion of the real variance.

Part of the reason for investigating the single snapshot in de-
tail is that a probability density for the angle estimator is known,
and therefore, the true variance can be determined. Furthermore,
the problems associated with a single snapshot shed light on
problems likely to be encountered with multiple snapshots and
multiple array elements.

Fig. 5. The ratio of the standard deviation of the electrical angle to CRLB
as a function of the SNR (thick solid line). Dotted line represents the ratio of the
sample standard deviation to CRLB for 100 trials, dash–dot line represents
1000 trials, and dashed line represents 100 000 trials.

An estimator of the electrical angle or phase shift between
two array elements is the angle of the complex quantity .
This angle has the probability density [6], [8]

(44)
where , is the correlation between the two
complex Gaussian random variables, and is the mean phase
shift. This probability density differs greatly from the normal
density, although it does have a characteristic bell shape. The
first difference to be noted in passing is that the angle proba-
bility density must be understood as being modulo , so for
large variances, comparing with the normal density is meaning-
less. For small variances, the angle probability density has much
larger tails than the normal density, and the remaining proba-
bility is more tightly grouped around the mean.

As a result of the nature of the angle probability density, it can
be expected that the variance is difficult to estimate accurately
even with a large number of trials. The larger tails of the den-
sity results in low probability events contributing significantly
to the variance and, therefore, the number of trials has to be large
enough to capture the behavior of these events. Fig. 5 illustrates
this effect by plotting the ratio between the true standard devi-
ation [calculated numerically using (44)] and the square root of
the CRLB as a function of the SNR. Also plotted is the ratio
between the estimated standard deviation and the square root of
the CRLB for 100, 1000, and 100 000 trials.

The general character of the estimated ratio is that it follows
the true value to a certain SNR and then breaks off at that level
and fluctuates rather wildly after that. The explanation is that
as the SNR increases, the angle probability density function
gets narrower, but the tails are still significant. Therefore, as the
SNR increases, the large variations become less probable, but
they still contribute significantly to the variance. Hence, a larger
number of trials is required to capture the true variance as the
SNR increases.
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Fig. 6. Ratio of modified standard deviation (calculated with the part of the
density closest to the mean) to CRLB . The horizontal axis is the log of the
probability left out of the calculation of the standard deviation. The thick lines
are for the angle density and the thin lines for a Gaussian density with equivalent
variances. The curves are for signal-to-noise ratios of 60, 40, and 20 dB, top to
bottom.

Fig. 6 shows the ratio of standard deviation to the square root
of the CRLB where the calculation of the standard deviation
is over the inner part of the probability density function (i.e.,
that part closest to the mean). The horizontal axis is the amount
of probability left out of the calculation (i.e., the probability in
the upper and lower tails). The horizontal axis can be viewed
as being roughly the inverse of the number of trials required to
obtain the given level (note the log scale). The thick black curves
are for the angle density and represent signal-to-noise ratios of
20, 40, and 60 dB, lower curve to higher. For comparison, the
black thin curves are for the normal density with an equivalent
variance. For the highest SNR shown, 60 dB, to approximate the
true ratio, the tail probability excluded must be less than about

for the angle density, while for the normal density, the tail
probability excluded is only . Taking these probabilities as
approximately the inverse of the number of trials required,
or greater trials are required to effectively estimate the standard
deviation for the angle density, compared with only 100 for the
normal density with equivalent variance.

From a practical point of view, the sample variance will
continue to increase as the number of trials increases until a
large enough number of trials (and this is very large for reason-
able signal-to-noise ratios) is reached. Therefore, determining
the variance of the estimator through the simulation approach
can lead to significant problems and/or misleading results.
For example, consider the case of using 100 trials to measure
the sample variance. For this case, the probability is 1/100,
which yields a ratio to the CRLB in the region of 2 on the

-axis of Fig. 6. Since the resulting ratio in this region for the
angle density is around 2 for all the SNR curves, it might be
concluded that the standard deviation is twice the square root
of the CRLB. This conclusion would be wrong, of course,
but there is no evidence of it being so unless fewer and more
trials are employed to confirm, and in this case not confirm, the
validity of the estimate.

Fig. 7. Probability that the estimate will be less than so many standard
deviations from the mean. Thick solid curves are for the angle probability
density and signal-to-noise ratios 60, 50, 40, 30, and 20 dB, top to bottom. For
reference, the thin solid line is a similar calculation for a Gaussian probability
density.

It should be noted that the curves in Fig. 6 are rough esti-
mates only of what the sample variance might be. Indeed, it
is expected that in determining the sample variance, there will
be outliers that will bias the estimate upward. Therefore, these
curves should be considered to be slightly lower than the true
sample variance.

Perhaps a better approach to the problem, at least for the
single snapshot case where we have the probability density func-
tion, is to represent performance by probability bounds instead
of variance. One of the properties of the angle pdf that makes
this approach attractive is that much of the probability is close to
the mean implying that for a single sample, there is a high prob-
ability that the angle will be close to the mean. So for a given
SNR, a probability that a sample will be within so many degrees
of the mean can be determined.

Specifically, referring to Fig. 7 where the probability of the
angle estimate being less than so many standard deviations from
the mean is shown, it is evident that the initial probabilities are
higher than those for the normal probability density function and
vary with the SNR. In estimating the electrical angle, it can be
said that for a reasonably high SNR, the estimate will be within
approximately one standard deviation 90% of the time, while
for the normal density, it is only 68% of the time.

Practically, the curves in Fig. 7 show that angle estimates will
generally be more tightly grouped around the means than if they
were distributed normally with the same variance, but there will
be outliers that are required to make the variances equal. So
although the true variance might be significantly larger than the
CRLB, a large percentage of the estimates may well be within
the standard deviation described by the bound.

The density describing the angle estimates for one snapshot
is particularly interesting in this regard. In Fig. 7, the probability
is plotted as a function of multiples of the standard deviation. If
probability is plotted as a function of multiples of the standard
deviation described by the CRLB (i.e., ), the result
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Fig. 8. Probability that the estimate will be less than so many multiples of
the CRLB . Thick solid curve is for the angle probability density for the
signal-to-noise ratios 60, 50, 40, 30, and 20 dB. (They lie on top of one another.)
For reference, the thin lines are for a Gaussian probability density with the same
signal-to-noise ratios, top to bottom.

shown in Fig. 8 is obtained. In other words, the probability of
being within a multiple of the standard deviation described by
the CRLB is independent of the SNR if the SNR is reasonably
high, say above 20 dB. Note that the curves for the normal den-
sity are now dependent on the SNR.

The reason that the probability of being within a multiple of
the is independent of the SNR follows from the func-
tion describing the probability density function for a high SNR.
The probability density function for high SNR near the mean
can be approximated by

(45)

and when scaled to multiples of the for high SNR,
namely since the high

, the approximation to the density becomes

(46)

which is independent of the SNR.
This function resembles the Student’s -distribution with two

degrees of freedom, but it is obviously not the Student’s -dis-
tribution because the interval for that density is the entire real
line, whereas the interval here is at most. Strictly speaking,
the density resembles that of a Student’s -distribution near the
mean only. For high SNR, this interval (near the mean) contains
most of the probability. Moreover, the variance for a Student’s
-distribution with two degrees of freedom is infinite, which is

certainly not the case here because the variance is bounded by
the integration limit of .

Therefore, by employing the equations describing the CRLB
for high SNR [(38) and (39)], probability bounds for the error
are obtained from Fig. 8. Specifically, errors in the electrical
angle estimates will be less than two times the standard devia-
tion described by the CRLB 81% of the time.

Fig. 9. Scatter plot of bottom estimates obtained through simulation for a
two-element array with a separation of 2�, a square pulse, and for footprint
shift only. The frequency is 100 kHz, the tilt angle 15 , the pulse length 50
cycles, and the depth 50 m. The solid lines represent �2 � CRLB about
the position of the flat bottom. The bottom is simulated by circular symmetric
Gaussian scatterers placed uniformly random over the bottom with an average
density of 200 scatterers per meter.

A specific example of bottom estimation is displayed in
Fig. 9. This figure also shows the standard deviation limit
described by . For this figure, the two-element
array was tilted at 15 , the frequency was 100 kHz, the element
separation was 2 , the pulse was square with a length of 50
carrier cycles (same parameters as the square pulse example in
[5]), and there is no noise (i.e., ). The bound and
scatter error go to zero at a distance along the bottom of 187 m
because at this range, the footprint shift noise is zero because
the bottom is broadside the array elements, which are tilted at
15 .

Fig. 10 shows the estimated standard deviation of the elec-
trical angle as a function of distance along the bottom. The esti-
mate of the standard deviation was made utilizing 100 trials, and
therefore, from Fig. 6, it is expected that the estimated standard
deviation will be close to , and indeed it is.

Figs. 9 and 10 show the spread in bottom estimation resulting
from footprint shift only. If uncorrelated noise is present, the
spread will be affected accordingly. To illustrate the effect of
uncorrelated noise, noise was added to the simulated signals to
produce an SNR versus distance-along-the-bottom curve shown
in Fig. 11. The thick solid line in the figure is the SNR calcu-
lated using the sonar equation and the associated average scat-
tering strength and pulse length. The thin solid line is the SNR
estimated from the signal produced by the simulator. As is typ-
ical with real deployments, the SNR is high at close ranges and
then drops off due to spherical spreading and decreased bottom
footprint of the pulse at farther ranges. Therefore, it is expected
that the dominant error source will be the footprint shift at small
ranges changing to uncorrelated noise at large ranges.

Figs. 12 and 13 show the spread associated with both footprint
shift and uncorrelated noise. Comparing Fig. 9 where only foot-
print shift is present with Fig. 12, it is evident that the spread at
small ranges does indeed follow that of the footprint shift model,
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Fig. 10. Sample standard deviation for 100 trials as a function of distance
along the bottom for the simulated data for footprint shift only shown in Fig. 9
(thin solid line). The thick solid line is the standard deviation predicted using
2 � CRLB .

Fig. 11. Single-element SNR for uncorrelated noise added to the simulation
signal of Fig. 10 as a function of distance along the bottom. The thick solid line
is the SNR predicted from the sonar equation. The thin solid line is the estimated
SNR from simulated data.

while at larger ranges, the spread is dominated by the uncorre-
lated noise. The solid lines in Fig. 12 are the
predictions. Fig. 13 shows the standard deviation for the com-
bined footprint shift and uncorrelated noise error sources. The
thick solid curve is the prediction for 100 trials
of the simulation. These curves are to be compared with those
of Fig. 10. Again, it is evident that as the SNR drops and the un-
correlated noise begins to dominate, the spread increases over
that due to the footprint shift alone. Specifically, the null in the
spread due to footprint shift at a distance of 187 m is filled in by
the spread caused by uncorrelated noise.

B. Multiple Snapshots

In this section, the improvement in angle estimation obtained
by using multiple snapshots is discussed. For swath bathymetry
applications, the multiple snapshots are usually obtained from

Fig. 12. Scatter plot of bottom estimates for both footprint shift and
uncorrelated noise for the same simulation condition as those for Fig. 10. The
thick solid lines represent�2�CRLB about the actual bottom position.

Fig. 13. Sample standard deviation for 100 trials as a function of distance
along the bottom for the simulated data for both footprint shift and uncorrelated
noise shown in Fig. 12 (thin solid line). The thick solid line is the standard
deviation predicted using 2 � CRLB .

a single ping, and therefore, they are spread in range as shown
in Fig. 14. A series of array snapshots is taken centered on the
time the angle estimate is desired. For analysis in this paper, it
is assumed that the snapshots are taken far enough apart that
they are uncorrelated. This assumption allows the CRLB to be
calculated from the sum of the Fisher information for each snap-
shot. Practically, this assumption means that there is no overlap
between pulse footprints on the bottom, and therefore, the snap-
shots must be separated by at least a pulse length.

This assumption of uncorrelated snapshots is reasonable in
the sense that if the snapshots are too closely spaced, no new
information is obtained and the estimation accuracy of a single
snapshot is obtained. Reducing the correlation provides new in-
formation and, hence, improved estimation, provided secondary
angle estimation clues are not available.

1) Pre-Estimation and Post-estimation Averaging: There
are two basic techniques available for combining multiple
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Fig. 14. Geometrical configuration for obtaining independent snapshots about
a central position on the bottom from one ping.

snapshots to obtain an angle estimate. The first is to estimate
the angle for each snapshot and then average to obtain the final
estimate. This technique is called post-estimation averaging.
The second consists of averaging the products for each
snapshot and then estimating the angle from the complex com-
ponents of that average. This technique is called pre-estimation
averaging. This second technique is better than the first in
certain circumstances, as briefly outlined below.

For post-estimation averaging, the variance of the estimator
is simply the sum of the variances of the single snapshot es-
timations. If the snapshots are close enough to each other, the
variance may be considered approximately equal, and averaging
results in a reduction of the estimation variance by a factor of

, which is the number of snapshots. Similarly, the CRLB is
reduced by a factor of because the Fisher information is mul-
tiplied by . Therefore, the ratio of the estimator’s variance to
the CRLB remains constant at the value for a single snapshot,
although the estimator’s variance decreases by a factor of .

The situation is quite different for pre-estimation averaging.
For this case, the approximate ratio of the estimator’s variance
to the CRLB for high signal-to-noise ratios is determined in
Appendix II and is

(47)

Therefore, for pre-estimation averaging, the variance of the
estimator approaches the CRLB as increases. The two cases
are compared in Fig. 15, where the ratio of the standard devia-
tion of the estimate to the square root of the CRLB for an SNR
of 20 dB is plotted as a function of . The thin and thick solid
lines are the predicted ratios for post- and pre-estimation aver-
aging, respectively. The circles (post-estimation averaging) and
stars (pre-estimation averaging) are simulated results for the two
cases. It can be seen that the ratios for both cases follow the
predicted curves with the ratio for pre-estimation averaging ap-
proaching one for increasing .

From Fig. 15 and (47), it is concluded that the number of
snapshots processed does not have to be very large before the
CRLB is achieved for practical purposes. Indeed, most of the
gain is obtained in the first five snapshots for which the ratio
for the variances is 1.25 and the ratio for the standard devia-
tions is . Specifically, the test statistic becomes
essentially Gaussian for increasing numbers of snapshots, and
therefore, the CRLB is a reliable estimate of the variance.

Although pre-estimation averaging seems to have a decided
advantage over post-estimation averaging, post-estimation av-

Fig. 15. Ratio of standard deviation toCRLB for pre-estimation averaging
(thick solid line) and post-estimation averaging (thin solid line) as a function
of the number of snapshots. The stars are simulation results for pre-estimation
averaging and the open circles simulation results for post-estimation averaging
for 100 trials.

erage should not be too quickly dismissed. The performance
of pre-estimation averaging is greatly affected by the validity
of assumptions made concerning the underlying random vari-
ables. The gain achieved in Fig. 15 assumes that the snapshots
are drawn from identical distributions. If one of the snapshots is
large compared to the others, it will dominate the average and
the resulting variance will be close to that for a single snap-
shot. post-estimation averaging does not suffer from this effect
because one angle will not dominate another in the same way.
Therefore, post-estimation averaging is more robust in unequal
snapshot situations. This effect will be illustrated presently.

2) Bottom Estimation Performance With Pre-estimation
Averaging: To demonstrate the improvement obtained in the
bottom estimate by using multiple snapshots a simulation was
run with parameters the same as for Figs. 9 and 10. Figs. 16 and
17 are the corresponding figures with five snapshots averaged
to yield the bottom estimate. In creating these figures, the snap-
shots were generated from new trials and, therefore, not from
the same ping. In practice, this would mean that the data from
different pings were averaged together, which is not practical
as it greatly decreases along track resolution. However, it is
useful in the investigation of the utility of multiple snapshots.

Comparing Fig. 9 for one snapshot with Fig. 16 for five snap-
shots (pre-estimation averaging), it is seen that the
curves are tighter by a factor of (note the vertical
scale change). But more importantly, there is not as much scatter
beyond these bounds. As predicted pre-estimation averaging of
snapshots reduces scatter and improves the bottom estimate.

Comparing Fig. 10 for one snapshot with Fig. 17 for five
snapshots, there is again a decrease in the standard deviation by
a factor of 2.236 over the results for a single snapshot. Specif-
ically, the curve drops from a maximum of 0.4
to a maximum of 0.179. For pre-estimation averaging, the vari-
ance drops more than this and is shown by the thick solid sim-
ulation curve, which is very close to that of the , and
matches the dashed curve, which is , the ratio
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Fig. 16. Scatter plot of bottom estimates for footprint shift only for five
snapshots using pre-estimation averaging and the same simulation parameters
as for Fig. 9. The thick solid line is the standard deviation predicted using
�2 � CRLB .

Fig. 17. Sample standard deviation for 100 trials and 5 snapshots for footprint
shift alone and the same simulation situation as Fig. 10. The dashed line
represents 1:118 � CRLB and the thick solid smooth line CRLB .
The smooth thin solid line is 2 � CRLB . The thick solid rough line is the
sample standard deviation for pre-estimation averaging and the thin solid rough
line for post-estimation averaging. The five snapshots are taken from different
simulated pings.

expected from Fig. 15 and averaging five snapshots. The sim-
ulation curve shown with a thin line is for post-estimation av-
eraging, and it follows the curve as expected.
Therefore, the gains expected from the curves shown in Fig. 15
comparing post and pre-estimation averaging are indeed real-
ized for combining snapshots obtained from separated pings.

If the snapshots are obtained from the same ping as illustrated
in Fig. 14, the statistics of the snapshots are expected to be sim-
ilar away from nadir, and therefore, results similar to those in
Fig. 17 are expected for this condition. Fig. 18 shows the results
for five snapshots averaged over 100 trials where the five snap-
shots are chosen for each bottom point from neighbors in the
same ping. These neighboring snapshots are separated by twice
the pulse length, which is 50 cycles at a carrier frequency of

Fig. 18. Sample standard deviation for 100 trials and 5 snapshots as described
in Fig. 17, but now, the snapshots are taken from different positions in the same
ping.

Fig. 19. Scatter plot of the bottom position for five snapshots and the same
situation as Fig. 16, but with uncorrelated noise added with a single-element
SNR as shown in Fig. 11.

100 kHz. The , , and
curves are shown along with the simulation results for pre-es-
timation averaging (thick solid rough curve) and post-estima-
tion averaging (thin solid rough curve). The results for post-es-
timation averaging follow the curve as before
(Fig. 17), but the result for pre-estimation averaging rises above
the curve as nadir is approached. This rise
is due to the imbalance in signal strengths associated with the
five snapshots in the nadir region. The post-estimation averaging
simulation curve is unaffected because the estimation procedure
mitigates the amplitude imbalance.

If uncorrelated noise is present, the trends for multiple snap-
shots are very similar to those for a single snapshot. Figs. 19 and
20 show the results for five snapshots resulting from the same
SNR curve shown in Fig. 11. Again, at small ranges, the spread
is dominated by the footprint shift effect and the spread at large
ranges is dominated by the uncorrelated noise. The factors of



BIRD AND MULLINS: ANALYSIS OF SWATH BATHYMETRY SONAR ACCURACY 383

Fig. 20. Sample standard deviation for 100 trials and 5 snapshots as described
in Fig. 17, but now including the effect of uncorrelated noise. The single-element
SNR is shown in Fig. 11.

and for pre-estimation aver-
aging and post-estimation averaging respectively hold for both
footprint shift and uncorrelated noise.

Although it is tempting to recommend the use of pre-estima-
tion averaging because its performance approaches the CRLB
for the model under consideration, post-estimation averaging
may be better in situations where imbalances in snapshot sta-
tistics occur. An example of such a situation is a bottom that is
made up of a few dominant scatterers mixed with many lower
amplitude scatterers.

IV. MULTIPLE ARRAY ELEMENTS AND BOTTOM ESTIMATION

In the previous section, discussion focused on the ability to
estimate the bottom using signals from a two-element array. In
this section, the analysis is extended to arrays consisting of more
than two elements. There are at least three good reasons for ex-
tending the number of elements in the array. The first is that with
additional elements, more angles can be estimated for a given
snapshot or group of snapshots. With two elements, only one
angle can be estimated, and therefore, if there are competing
signals from different directions, say a direct signal from the
bottom and a first-surface-bounce multipath, the estimate of the
bottom angle is compromised. For arrays composed of ele-
ments, up to angles can be estimated due to an increase
in the number of degrees of freedom. Tradeoffs in how these de-
grees of freedom are used are outlined in [3] and [4].

The second reason for extending the number of elements
is to mitigate the effects of array imperfections. Crosstalk
between elements and acoustic interactions with the structure
of the housing influence accuracy of angle estimates. The
effect of these characteristics of practical arrays can often be
reduced by the averaging that takes place in the processing of
multi-element array signals [9].

Finally, the third reason for employing multiple elements is
that there is a gain in estimation accuracy to be had in the pres-
ence of uncorrelated noise from element to element. Therefore,

there is a gain over front-end thermal noise and other like noise
sources. This gain will be described presently.

The number of processing schemes that can be employed,
each with its own advantages and disadvantages, complicates
describing the bottom estimation performance of multiple-el-
ement arrays. For an extensive review of these schemes, the
reader is referred to [7]. In this paper, the CRLB is employed to
evaluate potential performance and to establish trends in order
to steer clear of estimation method issues.

The gain achieved over uncorrelated noise from element to
element follows from the autocorrelation matrix as shown
in (21) for a three-element array. If only uncorrelated noise is
present (i.e., the signal is perfectly correlated), the autocorrela-
tion matrix simplifies to

(48)
For this autocorrelation matrix and the assumption of

Gaussian statistics for both the signal and the noise, it is shown
in [7, p. 946] that the CRLB is

(49)

where is the number of snapshots, is the number of array
elements, and is the SNR. (It should be noted that this
bound is independent of the actual electrical angle ). The
second term in the brackets dominates at low signal-to-noise
ratios and the first at high signal-to-noise ratios. Since the
discussion in this paper focuses on high SNR situations, the
CRLB is approximated by the first term, namely

(50)

for signal-to-noise ratios above say 20 dB.
Since the CRLB for two elements at high SNR is

, the CRLB for multiple elements is smaller
than the two-element bound by the ratio

(51)

where is the CRLB for a two-element array. This
ratio shows that there are merits to increasing the number of
array elements when uncorrelated noise from element to ele-
ment is the issue. There are, of course, practical limits to the
size of arrays but even small arrays achieve significant gains.

The feature of the autocorrelation matrix that makes this gain
possible is that the correlation remains constant regardless of
element spacing. If the correlation did drop off for larger spac-
ings, including the signals from these spacings does not have
the same advantage. For example, consider the correlation ma-
trix in (21) again, but now let (i.e., ). For
this situation, the following matrix is obtained:

(52)
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Fig. 21. Relative equivalent SNR as a function of spacing. The thick solid
curve with stars marking integer spacing is for a 50-cycle square pulse. The thin
solid curves with stars marking the integers are for 50-cycle pulses with q’s of
0.1, 0.3, 1, 3, 10, and 30, top to bottom.

In practice, this situation represents the footprint shift process
as being the only source of decorrelation from element to ele-
ment. Of course, for this process, elements spaced further apart
are less correlated (the correlation is represented by (28) for a
square pulse and (24) for an exponential pulse). Now suppose
an array with just two elements is considered but with different
spacing as represented by the multiple-element array. For the
two-element arrays, an SNR equivalent to can be defined as

(53)

where is the correlation associated with the spacing.
Therefore, the equivalent SNR for the various spacings
can be compared to see if there is appreciable gain.

For example, consider a square pulse where the correlation
from element to element is described by (28). If
where is the number of carrier cycles in the pulse, then

(54)

This implies that

(55)

So the equivalent SNR drops by from the value
associated with the closest spacing.

As is increased and as the pulse becomes less like a square
pulse, the equivalent SNR drops even quicker, as shown in
Fig. 21. In this figure, the relative equivalent SNR for increased
spacings normalized to that for a spacing of one is plotted
for various values of . The electrical angle associated with a
spacing of one is 60 for this plot. Since the equivalent SNR
drops off so quickly for increased spacing, it is expected that
the additional array elements will not significantly improve
angle estimation performance against footprint shift noise over
that obtained with a two-element array.

This lack of gain against footprint shift noise is illustrated in
Fig. 22, where the is plotted for both six-element and

Fig. 22. LogCRLB , where CRLB has the unit of radians, as a
function of SNR for a six-element array (lower set of curves) and a two-element
array (upper set of curves). The thin solid lines are the performance against
uncorrelated noise only. The dashed lines are for both footprint shift and
uncorrelated noise for a square pulse. The thick solid curves are for both
footprint shift and uncorrelated noise for a pulse with a q of 3. The pulse length
is 50 cycles and the electrical angle is 60 .

two-element arrays with two pulse shapes (pulse length 50 cy-
cles and an electrical angle of 60 ). Three curves are shown for
the two-element array and the six-element array. The reference
curves for performance against uncorrelated noise are shown by
thin solid lines and are parallel to each other with that of the
six-element array being lower by a factor of 5.9 or 0.77 on the
log scale as expected from the ratio in (51). The thick dashed
curves are for performance against both footprint shift and un-
correlated noise for a square pulse. The plateau effect due to
the footprint shift noise is evident as the SNR increases and the
footprint shift effect dominates. Since the equivalent SNR for a
square pulse does not fall off very quickly for increased spac-
ings, there is some gain to be had for increasing the number of
elements from 2 to 6.

The thick solid lines are for an exponential pulse with a of
3. Although the exponential pulse yields a lower threshold than
the square pulse, the difference in performance in terms of level
of the plateau between the two-element and six-element array is
not as large as for the square pulse. This reduced improvement
is expected from the more rapid loss in an equivalent SNR for
increased spacings as shown in Fig. 21.

The conclusion to be drawn from these results is that the ef-
fect of the footprint shift cannot be significantly mitigated by
adding additional array elements. On the other hand, additional
array elements do help combat uncorrelated noise (e.g., thermal
noise), imperfections in practical arrays, and they facilitate the
estimation of multiple angles. As was shown earlier, however,
multiple snapshots help mitigate both the effects of footprint
shift and uncorrelated noise.

V. GENERAL DISCUSSION

From the results of Sections II–IV, it is evident that the CRLB
is a useful tool for bounding the performance of angle estima-
tion techniques for determining bottom location. Specifically,
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performance for various scenarios can be estimated by plotting
as a function of processing parameters such as

the number of snapshots, the number of array elements, pulse
length, and pulse rise time (as described by ). In this section,
this tool is employed to predict the accuracy of bottom estima-
tion employing angle estimation techniques.

The objective of angle estimation in the context of this paper
is to determine the location of the bottom. To this point, the
accuracy of angle estimation for extended targets such as the
bottom is discussed from the point of view of determining the
electrical angle. A shift is now made to the physical angle and
ultimately bottom location accuracy.

There are many more combinations of parameters that could
be discussed than are appropriate for a single paper. There-
fore, this discussion focuses on the issue of multi-element ar-
rays versus two-element arrays with the availability of multiple
snapshots. Specifically, the performance of a two-element array
with spacing (where is the wavelength) is compared and
contrasted with that of a six-element array with spacing
and a two-element array with spacing , equivalent to the
spacing of the two outside elements of the six-element array. It is
shown that the performance of these arrays is essentially equiv-
alent with respect to errors caused by footprint shift. However,
the six-element array outperforms the other two with respect to
uncorrelated noise.

The performance measure is used because it
was shown to be representative of the angle estimation perfor-
mance. Specifically, errors in the electrical angle are expected
to be less than 81%–95% of the time depending
on whether single snapshot statistics apply (i.e., post-estimation
averaging of snapshots) or the statistics approach Gaussian (i.e.,
pre-estimation averaging of snapshots with no particular snap-
shot dominating). The CRLB for the physical angle is obtained
from the CRLB of the electrical angle and (3) by [7, p. 929]

(56)

With this relationship, it is possible to make some general
statements about the expected behavior of the CRLB for the
physical angle with respect to footprint shift and uncorrelated
noise.

A. Expected Performance Against Footprint Shift and
Uncorrelated Noise

For a two-element array and a square pulse where the pulse
length is long compared to the extent of the array, the
is described by (42), and therefore,

square pulse (57)

Substituting from (3)

square pulse (58)

Therefore, as the spacing increases, it is expected that the
CRLB for the physical angle will decrease. While this is true for
a square pulse, it is not generally true for practical pulses.

In practical situations, the pulse is not square and the effective
SNR falls off more rapidly as was shown in Fig. 21. Therefore,
the dependence on spacing of the CRLB for the electrical angle
is closer to rather than as it is for the square pulse. Hence,
it is found that the CRLB for the physical angle for practical
situations will be relatively constant with respect to changes in
spacing.

For uncorrelated noise, a specific expression for the CRLB
for the electrical angle is available, namely (50). Therefore, the
CRLB for the physical angle for the three arrays under consid-
eration are expressed as follows:

1) two-element array with spacing

(59)

2) -element linear array with spacing

(60)

3) two-element array with spacing

(61)

The ratio of to yields the reduction achieved
over uncorrelated noise by a multi-element array and is

(62)

which is the same as for the electrical angle [see (51)].
The ratio of to yields the reduction achieved

over uncorrelated noise by spreading the two elements to a wider
spacing. This reduction is

(63)

Therefore, it is desirable to spread the two elements to achieve
a lower CRLB for the physical angle. While this spread is de-
sirable, it also presents problems in practice because multiple
angle ambiguities that need to be sorted out are generated.

The relative goodness between a filled array and an array
composed simply of two outside elements is expressed by the
ratio

(64)

This ratio is always less than or equal to 1 and for large , the
ratio approaches , and therefore, the filled array generally
outperforms the sparse array. For small , however, the rela-
tive reductions are not that significant. For example, for

, the reductions are 1, 0.9, 0.8, and 0.71, respec-
tively. Therefore, for small arrays the large two-element array is
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Fig. 23. Error arc length for 2�CRLB as a function of distance along the
bottom for three arrays, footprint shift only, and a square pulse. The dash–dot
curve is for a two-element array with spacing �=2. The solid curve is for a
six-element array with element spacing �=2. The dotted curve (hidden behind
the solid curve) is for a two-element array with spacing 5(�=2). The pulse length
is 50 cycles, the frequency is 100 kHz, the depth is 50 m, the tilt angle is 15 ,
and the number of snapshots is 1.

significantly better than the small two-element array, but mar-
ginally worse than the filled array with respect to performance
against uncorrelated noise.

B. Bottom Estimation Accuracy

To compare the bottom estimation accuracy of the three ar-
rays in a way that has significance in a practical context, the
concept of an error arc length is employed. The actual error in
space for angle estimation methods is along an arc centered at
the true location, with a radius equal to the range as determined
from the time of flight. The error arc length corresponding to

is the product of the range and for
the physical angle, namely

(65)

where is the arc length, is the range, and is the
Cramer–Rao bound for the physical angle.

The actual error in depth or distance along the bottom
depends on the geometry. In other words, the estimated
bottom falls within along an arc centered at the true
location with the same probability that the physical angle falls
within or that the electrical angle falls within

.
Employing the same physical scenario as that for Fig. 9 (a

depth of 50 m, pulse length of 50 cycles, square pulse, a tilt
angle of 15 , no uncorrelated noise, one snapshot) except that
the smallest spacing is now instead of , the results for arc
length shown in Fig. 23 are obtained. The arc length for the two-
element array with spacing is shown by a dash–dot–dashed
line, the arc length for the six-element array (spacing ) by
a solid line, and the arc length for the two-element array with
spacing by a dotted line (cannot be seen due to overlap
with the solid line). Note that the large spaced two-element array

Fig. 24. Error arc length for the same scenario as Fig. 23 but the pulse has a
q of 3.

Fig. 25. Error arc length for the same scenario as Fig. 23 but the pulse has a
q of 3, and uncorrelated noise is added with the same single-element SNR as
shown in Fig. 11.

and the six-element array perform essentially the same. The
small two-element array performs significantly worse.

If the pulse is changed from a square pulse to an exponential
pulse with a of 3, the performance shown in Fig. 24 is obtained.
As expected, the overall performance is better and the short two-
element array’s performance more closely matches that of the
other two, especially near broadside.

If uncorrelated noise is present and a of 3 is maintained,
the performance shown in Fig. 25 is obtained. For this figure,
the noise was such that the SNR curve shown in Fig. 11 for a
50-cycle pulse is also valid. Note that the performance of the
large two-element array is significantly better than that of the
small two-element array at the further ranges where the uncor-
related noise dominates, but marginally worse than that for the
six-element array. This behavior is expected from the results of
the preliminary discussion.

The arc lengths shown in these figures do not characterize ac-
ceptable performance for a bottom estimation sonar, however,
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Fig. 26. Error arc length for the same scenario as Fig. 23 but the pulse has a q of
3, uncorrelated noise is added, and four snapshots are employed (pre-estimation
averaging).

only one snapshot is used. If more snapshots are employed,
better performance can be expected but at the loss of resolu-
tion. For example, if a 50-cycle pulse is employed at 100 kHz,
the bottom resolution at far ranges is approximately

. If a resolution of 0.5% of range (i.e., 1.5 m) is de-
sired, then uncorrelated snapshots can be used to reduce the es-
timation error. Fig. 26 shows the results for four snapshots. It is
interesting that the results are essentially the same for a pulse
length of 20 cycles and 10 snapshots, which maintains the same
resolution on the bottom.

The frequency of operation can be increased to increase res-
olution along the bottom. This increase in frequency does not
affect the error due to footprint shift because array sizes scale
to the new frequency. The error due to uncorrelated noise, how-
ever, does change because the pulse length is reduced, reducing
the number of scatterers in the pulse, hence, reducing the SNR.
Therefore, if the noise level and the scattering strengths stay
the same, the SNR drops by , increasing the
error due to uncorrelated noise by a factor , where

and are respectively the high and low carrier frequencies.

From an angle estimation point of view, there is little reason
to prefer a filled array of say six elements to a sparse array of
two elements of the same outside dimension. However, other
considerations weigh heavily in favor of the filled array. First,
if the sparse array is larger than , angle ambiguities have to
be identified and corrected. Second, the sparse array can esti-
mate only one arrival angle and, therefore, is not suitable for the
large number applications where multiple signals arrive from
different angles, whereas a filled array of elements is ca-
pable of estimating arrival angles simultaneously. Third,
it is desirable to average over a number of combinations of array
elements to mitigate the effects of array imperfections such as
crosstalk, and gain and phase variations present in real arrays.

The signals from a filled array can be processed in such a
manner as to optimally combat the second and third issues
listed above. For example, suppose for a shallow water survey,

it is expected that there will possibly be a first surface bounce
multipath and one water column target competing with the
direct bottom backscatter signal. Then at least three degrees
of freedom are required to estimate three angles, indicating
the necessity of at least a four-element array. However, if a
six-element array is employed, there are three combinations of
four elements available by stepping along by one element. Em-
ploying these three combinations of four elements as separate
arrays in a least squares technique to estimate angles supplies
the number of degrees of freedom to estimate the expected
number of arrivals. The three combinations also provide a
degree of averaging over the array elements to mitigate array
imperfections. These techniques are, for example, used in
Benthos’ C3D sonar to obtain a good estimate of the bottom in
less than ideal conditions [10].

VI. SUMMARY AND CONCLUSION

In this paper, an analysis of high-resolution swath bathymetry
was presented. The analysis included consideration of mul-
tiple-element arrays and multiple snapshots taken with these
arrays. The primary analysis tool developed for comparing
performance was the CRLB, which was applied to bound the
variance on AOA estimation. This bound was developed for
a common bottom model consisting of complex Gaussian
scatterers. For this model, the CRLB was expressed in terms of
the signal correlation matrix for the acoustic array. Two signal
types were considered, a square pulse and an exponential pulse,
for which the correlation matrices are presented; hence, the
CRLB was determined. Through this analysis, two error mech-
anisms were identified as being important for the short-pulse
(high-resolution) swath bathymetry sonar application: decor-
relation across the array caused by independent noise from
element to element such as thermal noise; and decorrelation
across the array caused by footprint shift.

To validate the CRLB as a useful tool for analyzing AOA ac-
curacy, the problem of estimating bottom position with a two-el-
ement array was treated in detail using the bound, probability
analysis, and simulation. It was shown that the true variance of
angle estimation is difficult to obtain through simulation and,
hence, supporting analysis is required. As a result of the prob-
ability analysis, a criterion for evaluating angle estimation per-
formance based on the CRLB was chosen, namely errors in es-
timating the AOA are expected to be less than
81–95% of the time, depending on whether one or more snap-
shots are used for the estimate.

Multiple snapshots of the signals across the two-element
array were employed to decrease the error in estimating
the AOA. Two methods for combining the snapshots were
discussed, pre-estimation averaging and post-estimation aver-
aging. It was shown that pre-estimation averaging outperformed
post-estimation averaging in the sense that for the former, the
variance of the estimation approached the CRLB, while for the
latter, the variance remained at twice the CRLB for 100 trials.
Nevertheless, it was also observed that the post-estimation av-
eraging may be a more robust technique in certain situations if
the underlying statistical model intensities change for different
snapshots.
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The usefulness of employing multiple array elements to in-
crease AOA estimation performance was also investigated. It
was shown that in terms of angle estimation performance, the
detrimental effect of footprint shift cannot be significantly mit-
igated by additional array elements. However, additional ele-
ments do help in mitigating the effect of uncorrelated noise (e.g.,
thermal noise).

In comparing multiple-element performance to that of two-el-
ement arrays, an -element linear array was compared with 2
two-element arrays, one with spacing and the other with

spacing (i.e., the same dimensions as the outer ele-
ments of the multi-element array). Expressions for performance
against footprint shift and uncorrelated noise were obtained.

Finally, bottom estimation accuracy was compared for a
six-element array and 2 two-element arrays. For this compar-
ison, a new measure of performance was defined called “the
error arc length” based on the angle error determined from the
CRLB. The error arc length gives a spatial, or length dimension
to the error that facilitates contextual interpretation. Using this
measure, it was found that the six-element array performed
only slightly better against uncorrelated noise than the two-ele-
ment array with spacing, whereas they performed equally
against footprint shift. Therefore, in consideration of only these
two effects, there is little reason to use a multi-element array.
However, in practical scenarios, where two or more signals may
be incident on the array at the same time (e.g., multipath envi-
ronments), a filled array offers additional degrees of freedom
that permit the estimation of multiple angles. In addition, a
filled array does not suffer from angle ambiguity problems as-
sociated with a widely spaced two-element array. Furthermore,
certain imperfections encountered in practical transducer arrays
can be mitigated by the spatial averaging available with a filled
array. Therefore, it is concluded that filled arrays are preferred
over two-element arrays for practical reasons.

APPENDIX I
EXPRESSION FOR

From Fig. 27

(I.1)

and

(I.2)

Since the signal samples are taken at the two elements at the
same time, the time of flight for the two path is equal, hence,

(I.3)

The expression for is

(I.4)

But

(I.5)

Fig. 27. Geometry for calculation of �x.

and using (I.3)

(I.6)

hence,

(I.7)

Substituting (I.7) into (I.4) results in

(I.8)

Using (I.1) and (I.2) and collecting and rearranging terms results
in

(I.9)

Equation (I.9) is the exact expression for . Approximations
are now made consistent with the bottom estimation problem.
Neglecting all terms since and noting also that

(I.10)

so that

(I.11)

Then

(I.12)

But as

(I.13)

If

(I.14)
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in other words, not near nadir, then

(I.15)

and

(I.16)

Now , so

(I.17)

which is the desired result.

APPENDIX II
VARIANCE FOR PREESTIMATION AVERAGING

As was shown in Section III-A, the correlation of the signals
for a two-element array can be modeled using an effective SNR.
Therefore, the signals can be considered composed of signal
plus an uncorrelated noise term as shown in the following:

(II.1)

(II.2)

where and are the signals at array elements 1 and 2, respec-
tively, is a Rayleigh random variable representing the ampli-
tude, is a random variable distributed uniformly over , and

and are the effective uncorrelated noises.
For pre-estimation averaging, the test statistic is

summed over snapshots and then the angle is determined as
follows:

(II.3)

and

(II.4)

where is the estimated electrical angle, is the imaginary
part, is the real part, and it is assumed that the arctan
function takes quadrants into account. Noting that

(II.5)

the following is obtained for

(II.6)

Assuming the SNR is large the last term is neglected.
If, for the present, the ’s are assumed to be known con-

stants, the two remaining sums that include noise terms are
Gaussian circular symmetric random variables with component

Fig. 28. Illustration of probability density for given r .

variances . Since these sums are composed of inde-
pendent noise terms, the sum of the two sums is also a Gaussian
circular symmetric random variable with twice the component
variance, namely

(II.7)

Again, remembering that for the present, the ’s are assumed
to be known constants, Fig. 28 characterizes the situation, where

(II.8)

Therefore,

(II.9)

and the unconditional variance can be determined by

(II.10)

where is the probability density of . Since is the sum
of independent squared Rayleigh random variables, it is the sum
of independent exponential random variables. Therefore,

(II.11)

where is the parameter describing the original Rayleigh den-
sity of the ’s.

Therefore, the unconditional variance obtained using
(II.9)–(II.11) is

(II.12)

Solving (II.12) results in

(II.13)

where is the effective SNR defined as .
Since

(II.14)
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the desired result is obtained, namely

(II.15)

The approximate sign is used to indicate that the expression is
valid only for high signal-to-noise ratios.
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