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An Analysis of Pilot Symbol Assisted Modulation 
for Rayleigh Fading Channels 

James K. Cavers, Member, IEEE 

Abstract-Proposals have appeared recently for the use of 
pilot symbols to mitigate the effects of rapid fading in mobile 
communications. Unlike the more familiar pilot tone systems, 
pilot symbol assisted modulation (PSAM) does not affect the 
transmitted pulse shape or the peak-to-average power ratio, and 
implementation is straightforward. This paper puts PSAM on a 
solid analytical basis, a feature missing from previous work. It 
presents closed form expressions for the BER in BPSK and 
QPSK, for a tight upper bound on SER in 16QAM, and for the 
optimized receiver coefficients. The error rates obtained are 
lower than for differential detection for any combination of 
SNR and Doppler spread, and the performance is within 1 dB 
of a perfect reference system under slow fading conditions, and 
within 3 dB when the Doppler spread is 5% of the symbol rate. 

I. INTRODUCTION 
APID fading is a central problem in digital mobile R communications. It degrades the bit error rate (BER), 

and frequently introduces an irreducible BER, or error floor. 
It also inhibits the use of multilevel modulation formats, with 
their greater spectral efficiency. 

The use of a pilot tone to mitigate the effects of fading has 
been explored by several authors [ 11- [4]. The tone provides 
the receiver with an explicit amplitude and phase reference 
for detection, and thereby suppresses the error floor. The 
question of where in the spectrum to locate the tone is a 
difficult one. Perhaps the best known solution is transparent 
tone-in-band, or TTIB [l], [2], [4]. Although it is a general 
solution, it requires relatively complex signal processing and 
results in an increased peak-to-average power ratio. 

Recently, pilot symbol assisted modulation (PSAM) has 
been proposed [5]-[7] as an alternative. The transmitter 
periodically inserts known symbols, from which the receiver 
derives its amplitude and phase reference. Like pilot tone 
modulation, PSAM suppresses the error floor and enables 
multilevel modulation. However, it does so with no change to 
the transmitted pulse shape or peak to average power ratio. 
Processing at the transmitter and receiver is also simpler than 
with TTIB. 

Previous studies of PSAM [SI-[7] were based on simula- 
tion and experimental implementations. Although they 
demonstrated feasibility, they did not provide the perfor- 
mance analysis needed before their results can be general- 
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ized. The present paper supplies the missing analysis. It 
includes closed form results for the BER in BPSK and 
QPSK, and for a tight upper bound on the symbol error rate 
in 16QAM, as well as expressions for the optimum interpola- 
tor at the receiver. No numerical integrations are required, 
though optimization requires solution of the normal equa- 
tions. The performance of the optimized system is excellent, 
within 3 dB of an unachievable perfect reference system, 
even when the Doppler spread is 5% of the symbol rate. At 
1% Doppler, the loss is only 1 dB, and it can be further 
reduced at lower Doppler values. 

11. SYSTEM MODEL 
A .  General Description 

A PSAM system can be represented by the block diagram 
of Fig. 1. Known symbols are inserted periodically into the 
data sequence prior to pulse shaping, and the composite 
signal is transmitted in the usual way over a channel charac- 
terized by flat fading and additive noise. The resulting frame 
structure is shown in Fig. 2. For simplicity, we will assume 
Rayleigh fading, though the extension to Rice fading is 
straightforward. 

After matched filter detection, the receiver splits the per- 
symbol samples into two streams. The reference branch 
decimates the samples to extract those due to the pilot 
symbols, and interpolates them to form an estimate of the 
channel state. It then scales and rotates a reference decision 
grid (shown in Fig. 1 for 16QAM) with the estimate, and 
feeds the modified decision boundaries to the data branch. 
Although this model is equivalent to the usual formulation 
[1]-[7], in which the receiver normalizes the data branch by 
dividing it with the estimate from the reference branch, it is 
more mathematically tractable. Finally, the data branch con- 
tains a delay to compensate for the interpolation delay in the 
reference branch. 

There are two immediate consequences of the technique. 
The first is delay in the receiver; in order to obtain enough 
pilot samples for a good channel estimate, the receiver must 
wait and buffer samples for several frames. The second is 
that the interpolation coefficients used to form the channel 
estimate depend on the position within the frame of the 
sample whose identity is to be determined. 

B. Transmitted Signal 
The transmitted signal has a complex envelope given by 

m 

s ( t )  = A b ( k ) p ( t  - k T )  (1) 
k =  - m 
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D. Receiver Processing 
CUI- 

The receiver detects the p u k s  using a matched filter with Insert SraPlW 

I 
1 impulse response p*( - t ) /  ,/No , where the noise normaliza- 

tion is for later notational convenience. We assume no inter- 

reference 
wid 

Fig. 1. Organization of a pilot symbol system. 

where T is the symbol duration, b ( k )  is the kth symbol 
value for BPSK, QPSK, or a general QAM, A is an ampli- 
tude factor, and p ( t )  is a unit energy pulse: 

symbol interference, which implies Nyquist I pulses with no 
receiver timing error and fading slow enough not to cause 
appreciable distortion of the pulses. As a point of interest, a 
5% Doppler shift results in only 1 % maximum IS1 in the case 
of 25% rolloff spectral raised cosine pulses. 

It is convenient at this point to introduce conventional 
received SNR measures. Define the ratio q of pilot power to 
data power: 

4 = I 5 I 2 / ( M -  l ) E [  I b12] (7) 

where the expectation is taken over data symbols only. The 
expected total energy received over a frame is: 

E, = u t A 2  ( I 8 I + ( M - 1) E [  I b I ’1 ) . (8) 

With n bits per symbol, and M - 1 data symbols in a 
frame, the received energy per data bit is: 

(9) 
ug’ A 2  

n ( M -  1) 
E, = 

The symbol-spaced samples r( k T )  of matched filter output 
(2) are given by 

Ac( k T )  
b ( k )  + n ( k )  = u ( k ) b ( k )  + n ( k )  r ( k )  - 

The symbols are formatted into frames of length A4 in which 

noted in [6], it is better to randomize the pilot values to avoid 
transmitting tones, but this does not affect the analysis. 

C. Fading Channel Effects 

the pilot symbols at times i = kM have a known value b. As JN, 
( 10) 

where the Gaussian noise samples n ( k )  are white with unit 
variance and the symbol gain u ( k ) ,  as defined here, has 
variance: The fading channel output is given by 

4 4  = c ( t > s ( t )  + 4) (3) 

in which n,(t) is AWGN with power spectral density No in 
both real and imaginary components. The channel’s complex 
gain c ( t )  incorporates both fading and frequency offset: 

c ( t )  = e x p ( . D a f o t ) g ( t )  (4) 

where f o  is the residual frequency offset after AFC, and 
g (  t )  is the complex Gaussian fading process with variance U: 

and Doppler spread f D .  Its autocorrelation function can be 
written: 

in which Y b  = Eb /No.  
Without loss of generality, take b(0) be a pilot symbol, 

and consider the detection of b( k ) ,  - L M/2] 5 k 5 L( M 
- 1)/2J . The channel state estimator prepares an estimate 
of the symbol gain u ( k )  in (10) using the K nearest pilot 
samples: 

I KI2I 

u ( k )  = h*(i ,  k ) r ( i M ) .  (12) 
i =  - I K / 2  I , >  

R c ( 7 )  = u,”l?,(~) ( 5 )  

where ic(7) is the unit power equivalent. Although the 
analysis is not limited to a specific autocorrelation function, 

malized version to be: 

Note that the coefficients h(i ,  k )  depend on the position k 
within the frame. The estimation error is denoted by e ( k ) ,  so 
that 

in the numerical results presented later we assume the nor- 

(6) 

u ( k )  = u ( k )  + e ( k ) .  (13) 

E. Optimum Interpolation 
Previous descriptions of PSAM used plausible, but arbi- 

trary, interpolation filters: a lowpass in [6] and an approxi- 
mately Gaussian filter in [7]. Here we use a Wiener filter to 

k( 7) = exp ( j 2  . fO7)  Jo(2 rf,.) 

which has the U-shaped power spectrum characteristic of 
isotropic scattering [8]. 



688 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 40, NO. 4, NOVEMBER 199 I 

minimize the variance of the estimation error e,  in order to 
discover the limits of the technique. 

Define the length K column vector r as the set of pilot 
samples r ( i M ) ,  - L K/2] 5 i I L K/2] and h ( k )  as the 
corresponding set of coefficients for the kth position in the 
frame. Then the estimated symbol gain is given by 

u ( k )  = ht(k)Y (14) 

where the dagger denotes conjugate transpose, and the inter- 
polation error is given by 

e ( k )  = u ( k )  - h t ( k ) r .  (15) 

The K x K autocorrelation matrix is: 

L 

and the M - 1 length K covariance vectors are: 

1 
~ ( k )  = - E [  2 u * ( k ) r ] .  (17) 

Then the variances of interest are given by 

u,2(k) = h t ( k ) R h ( k )  

u i u ( k )  = w t h ( k )  

u:(k)  = U,' - 2 R e [ ~ , ' ~ ( k ) ]  + u,'(k). (18) 

As is well known (e.g., [9]), an optimum estimate results 
if the coefficient vector h is selected to satisfy the normal 
equations: 

R h ( k )  = w(k). (19) 

The estimation error variance then attains its minimum value, 
and we have: 

u,2(k) = U,'&?) = wt(k )R- 'w(k )  

U:@) = U,' - U,'. (20) 
Moreover, the estimation error is uncorrelated with r(  iM) 
and u(k). 

In the case at hand, we have explicit expressions for 
components of the arrays R and w ( k ) .  From (lo), (1 l), and 
(16), we have: 

R ~ ,  = y , n ( ~  - I)-f?,((i - ~ ) M T )  + hi, (21) 

where 6,, is the Kronecker delta, and from (7), (lo), ( I l ) ,  
and (17) we have: 

4 
1 + 4  

Calculation of the optimum interpolation coefficients and the 
resulting variances is straightforward. 

111. BPSK AND QPSK SIGNALING 

A .  Calculation of BER 
First, consider BPSK. The pilot symbols have the value 

h = 1, and the data symbols are b(k )  = f 1. The receiver 

makes decisions by phase correcting the matched filter output 
with the channel estimate and comparing the result to zero: 

Re [ r (k )u*(k ) ]  : O  (BPSK). (23 1 
If the transmitted bit is + 1, then an error is made if the 

real part of the decision variable (23) is negative. Since r(  k )  
and u(k)  are correlated, zero mean, Gaussian random vari- 
ables, we can use a standard result for the probability of this 
event [9, App. 4B]: 

where p(k)  is the correlation coefficient: 

p ( k )  = Ur2V(k) /U,U" (k ) .  (25 1 
Since b ( k )  = 1, we have a?"(k) = u;"(k) and U,' = U,' + 1. 
For an arbitrarily selected filter h( k ) ,  therefore, the correla- 
tion coefficient is given by 

wt ( k )  h ( k )  (BPSK, arbitrary h ( k )  ) 
p ( k )  = J(u,' + l ) h t ( k ) R h ( k )  

(26) 

where U,' is given by (1 1). In the case of the optimum filter 
(19), the correlation coefficient is real: 

p ( k )  = 
w + ( k ) R - ' w ( k )  

J( U,' + 1) w y  k )  R -  ' w( k )  

(BPSK, optimum h ( k ) )  (27) 

and the error probability becomes: 

Pb( k )  = (1 - p (  k ) ) / 2  (BPSK, optimum h ( k ) ) .  (28) 

Next, consider QPSK, in which the data symbols are 
b(k )  = f 1 f j .  Although the pilot symbol would be se- 
lected from this set in practice, the resulting a / 4  rotation in 
u(k) must be corrected before use. To simplify the notation, 
therefore, we will consider the pilot symbols to be real, with 
the value 8 = 4. The decision criteria are then: 

Re [ r (k )u*(k ) ]  :O , Im[ r (k )u*(k ) ]  : O  (QPSK). (29) 

We will evaluate the BER for the real component only, since 
it is the same for the imaginary component. However, if U,'" 

is complex, the resulting phase bias means we have to 
average the error probabilities for the two cases b ( k )  = f 1 
+ j ,  since they differ. 

The BER calculation is much like that for BPSK, with the 
change that LT;~ = u i U b ( k ) ,  so that from (18): 

Wt ( k )  h ( k )  b ( k )  

4 2 u ;  + l ) h t ( k ) R h ( k )  
P ( k )  = 

(QPSK, arbitrary h ( k ) ) .  (30) 

with a similar change for optimum h ( k )  (30). Note that the 
definition of w ( k )  (17) makes its value, and that of h ( k ) ,  
different from the BPSK case. Finally, the BER is given by 
(24), since p ( k )  is complex. 
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A similar analysis can be applied to M-PSK systems with 
more than four phases [9, App. 7A]. Again, the performance 
is determined by a correlation coefficient. 

B. Efect o f  Interpolation Position 
The position of a symbol within the frame determines the 

estimation error, and hence the BER. Numerical experimen- 
tation, though, showed a small position dependence, observ- 
able only at very high SNR, where AWGN did not mask the 
effect. For example, for K = 7, in an M = 10 symbol 
frame, with f D T  = 0.01 and - y b  = 50 dB, there was only a 
0.8% variation in BER across the frame. For a very short 
filter ( K  = 3), fast fading ( f D T  = 0.05), and 50 dB SNR we 
found a factor of 3 variation across a 5-symbol frame. 
However, for normal operating parameters and K greater 
than 7, we determined that position dependence is negligible. 
Subsequent sections evaluate the BER only for k = 1, that is, 
for the symbol immediately following the pilot. 

C. Eflect of Pilot Symbol Spacing 
The frame size, or pilot spacing, M ,  has an optimum 

value, which represents a trade-off between wasting energy in 
unnecessary pilot symbols and not sampling the fading pro- 
cess often enough for good estimation. Fig. 3 illustrates the 
effect for BPSK at -yb = 30 dB, with a variety of fade rates, 
and a 63 coefficient filter optimized at every point on the 
graph. Not surprisingly, the BER rises steeply when the 
frame size causes sampling to fall below the Nyquist rate, 
i.e., when M < 112 f,T. 

We selected a frame of M = 7 symbols as the benchmark 
for the rest of the paper; although it represents a 14% loss of 
capacity, it does accommodate fade rates up to 5% of the 
symbol rate. If slower fade rates are expected-for example, 
100 Hz Doppler in a 16 ksymbol/s system gives f D T  = 6.25 
x 10-3-then much larger frames can be adopted, to reduce 
the loss of capacity. 

The loss of capacity is somewhat less than in TTIB [l], a 
well-known pilot tone technique. TTIB requires a bandwidth 
increase of 2 f, for the tone, plus an overlap region of 
comparable size for synchronization, for a total of about 
4 f,. With symbol spacing T ,  this is a fractional increase in 
bandwidth of about 4 f,T. In comparison, as we saw above, 
PSAM requires a fractional increase of 1 /M,  or about 

As noted earlier, there is some startup delay in PSAM. 
The receiver must discard several data symbols at the start of 
each transmission, until it has accumulated enough pilot 
symbols for useful interpolation. There are about KM/2 
such wasted data symbols-about 39 for the values M = 7 
and K = 11 we have adopted as a benchmark. This neverthe- 
less compares favorably with TTIB, which has been shown 
previously [lo] to require on the order of 150 symbols to 
acquire phase lock at the start of a transmission. 

The delay of K M / 2  symbols also has a potentially adverse 
effect on speech communication. However, for QPSK and an 
8 kb/s codec, the 39-symbol delay in our benchmark system 
represents only 10 ms of speech. For many applications, the 
delay can be ignored. 

2 f D T .  

IO*J " ' " " " I '  " " " ' ' c 

f,T=0.005 

10-1 , , , , , , , , , , , , , , , , I 
0 5 10 15 20 

Pilot Symbol Spacing M 

Effect of frame size on BPSK (-yb = 30 dB, K = 63) Fig. 3 .  

10- I . . , . , . . . . , . . . . , . . . . , . . . . , . . . . , .  . , . , . . . .  1 
0 5 10 15 20 25 30 35 40 

Number of Coefficients K 

Effect of interpolator size on BPSK ( M  = 7). Fig. 4. 

D. Efect o f  Interpolator Size 
The number of interpolator coefficients is a significant 

issue, as it affects delay and computational load, as well as 
BER. Fig. 4 shows the dependence on K for BPSK and a 
seven-symbol frame. Again, the coefficients are optimized at 
every point. The improvement beyond five or ten coefficients 
is very slight. In the remaining sections, we use K = 11, 
though a reduction even to five coefficients would not cause 
serious harm. 

E. Performance with Optimized Coeficients 
Fig. 5 shows BER curves for PSAM BPSK with a seven- 

symbol frame and 11 coefficient interpolation. The coeffi- 
cients are optimized at every point. We see that for 0 Hz 
Doppler, PSAM is only 1 dB poorer than the unachievable 
coherent BPSK. Of the l$sa, 0.7 dB is attributable to the pilot 
symbols themselves, whiqh are unnecessarily frequent for 
f D T  = 0,  and the remainder is due to the limit of 11 coeffi- 
cients in the interpolation. Even at 5 %  Doppler, the loss 
compared with coherent BPSK is only 3.5 dB and, as hoped, 
there is no error floor, at least in the useful range. 

Comparison with DPSK, as calculated from expressions 
given in [9], shows that PSAM is better than DPSK at all 
values of SNR and Doppler spread. DPSK, of course, devel- 
ops a significant error floor at large values of Doppler. 
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BER performance of optimized PSAM for BPSK. Fig. 5.  

Comparison with the pilot tone based TTIB is also interest- 
ing. It has been shown previously [IO] that the phase lock 
required by TTIB when used for data forces differential 
encoding, and hence a performance penalty of 3 dB. In 
contrast, PSAM produces an absolute phase reference, and 
therefore does not need differential encoding. 

The frequency offset f, has no effect on PSAM BER. By 
assumption, f,T and fDT are both small enough not to 
introduce intersymbol interference by distorting the pulses, 
and the optimized coefficients simply introduce compensating 
phase shifts. 

The performance of QPSK has not been illustrated. Its 
BER is within 2% of that of BPSK for error rates of lo-' or 
less, as both numerical evaluation and series expansions 
demonstrate. 

F. Eflect of Mismatch 
The results of Section 111-E above are somewhat unrealis- 

tic, in that the interpolator coefficients are optimum at every 
point on the graph. In practice, we would either design an 
adaptive interpolator or, more likely, optimize for one oper- 
ating point, and use those coefficients even if conditions 
change. 

Fig. 6 illustrates one such trial, in which the coefficients 
are optimized for y b  = 20 dB, 5 %  Doppler, and no fre- 
quency offset. The result is that lower values of Doppler give 
no improvement in performance over most of the useful 
range. Even frequency offset, acting alone, had a negligible 
effect. However, the curve for combined 5% Doppler and 
1 %  frequency offset shows a very substantial error floor, 
caused by the fact that the total bandwidth exceeds that of the 
interpolation filter. We have a clear warning that the filters 
must be designed for worst case conditions. This observation 
also applies to pilot tone systems, of course. 

IV. 16QAM SIGNALING 

A .  Calculation of SER 
In 16QAM we use symbols in which both real and imagi- 

nary parts of b(k) take on the values - 3 ,  - 1 ,  1 ,  3,  and the 
expected value E[ 1 b 1'3 = 10. In the absence of fading, we 
would use the following six decision boundaries: Re [ f (  k)] 

=-,, p ' ! , , ( O  '\! \ 

0 'I 

I 
! 

Fig. 7.  16QAM constellation and decision boundaries in fading. 

= 0, Im[r(k)] = 0, Re[r(k)  k 21 = 0, and Im[r(k)  & 
2 j ]  = 0. As shown in Fig. 7,  however, fading scales and 
rotates the signal constellation. The receiver compensates 
by scaling and rotating the decision boundaries, using the 
channel estimate u( k) .  The six decision boundaries become: 

Re[ru*] = 0 Re[  -jru*] = 0 

R e [ ( r k 2 u ) v * ]  = O  R e [ ( - j r f 2 u ) u * ]  = O  (31) 

where we have replaced Im [ * I  with Re [ - j  ] for simplic- 
ity, and have dropped the dependence on k ,  since we deter- 
mined it to be weak in Section 111-B. 

A symbol error occurs if r falls outside the decision cell 
determined by the appropriate boundaries. The probability of 
this event depends on the transmitted symbol; clearly, it is 
greater for an interior cell than it is for a comer cell, which 
has only two boundaries. There are four distinct cell types, 
for which representative symbols are: b, = 1 + j  (interior 
cell); b, = 1 + j 3  (edge cell); b, = 3 + j  (another edge 
cell); and b4 = 3 + j 3  (comer cell). We shall carry the 
calculations through only for the interior cell with symbol 
b,. Calculations for the rest are similar, and are summarized 
in the Appendix for completeness. 

For the given interior cell, an error occurs if any of the 
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following are true: 

Re [ y,,u*] = Re [ T U * ]  < 0 

Re [ y12u*] = Re [ -jru*] < 0 

Re [ y13u*] = Re [(2u - , ) U * ]  < 0 

Re [ y14u*] = Re [ ( 2 u  + jr)u*] < 0 (32) 

where yI1 to yI4, as defined here, are zero mean Gaussian 
variates, correlated with U. The probability of each event can 
therefore be calculated as in Section 111-A: 

a 
w U3 

t f,T=0.005 1 

where p l m  is the correlation coefficient relating y , ,  and U. 
From the definitions of y l m  (32) and r (lo),  the four 
correlation coefficients are easily determined to be: 

p , ,  = b,U;"( ( 1 b ,  I 2u; + 1 )  U,') - 1'2 

P12 = -jp11 

P , ~  = (2.; - b,~:~)((4~, '  - 4Re [ b , ~ : ~ ]  

+ 1 b, 1%: + l ) o p 2  

p14 = (20,' +jb,~, '~)((40,2 - 41m [b,~:"] 

+ 1 b, pJ; + 1 ) U p '  (34) 

where the variances U:, U:", and U,' are given by (11) and 
(18). The union bound gives a close approximation to the 
error rate for symbol b,: 

4 

el 5 C P e ( P l m > .  (35) 
m =  1 

Pilot Symbol Spacing M 

Effect of frame size on 16QAM ( y b  = 30 dB, K = 63). Fig. 8. 

f,T=O.O 1 
10- . . . . . . . . . . . . . . . . . . . . . . . .  , , , ,  , , , ,  , , , ,  

0 5 10 15 20 25 30 35 40 

Number of Coefficients K 

Effect of interpolator size on 16QAM ( M  = 7). Fig. 9. 

C. Frame Size and Interpolator Size 
Figs. 8 and 9 illustrate the effect of frame size M and 

number K of interpolator coefficients for 16QAM. The pilot 
symbols were selected as the comer symbols b4 = 3 + j 3 ;  
more precisely, they were real symbols of the same magni- 
tude m. It can be seen that M =  7 and K =  11 is a 
reasonable choice for the baseline system, just as it was for 
BPSK/QPSK in Section III. 

In practice, the bound is almost indistinguishable from the 
true value if the SER is below about 0.01, and is 
useful-within about 10% of the true value-for SER as high 
as 0.4. 

As noted above, a similar calculation must be performed 
for the other three cell types. Since the four cell types are 
equally represented, the final calculation for SER is just: 

1 4  I '  

P, = - Psi. 
4 ; = I  

B. Higher Order Constellations 
For larger constellations like 64QAM, calculations like 

those above become very tedious, and upper bounding the 
overall SER with that of a single interior cell becomes 
attractive. However, not all interior cells have the same error 
rate, as can be seen readily from (13). We can write: 

r = bu + be + n 
so that the additive disturbance has variance 1 b 1 '02 + 1. 
Therefore the cells farthest from the origin-the interior 
comers-have the highest error rate, and provide the upper 
bound. 

D. I6QAM With Optimized Coeficients 
Fig. 10 shows the SER of PSAM with coefficients opti- 

mized at every point. For comparison, the lowest curve 
represents the performance of an ideal system, with perfect 
phase and amplitude reference, and was obtained by letting 
M approach infinity in U:, then setting U,' and U;" equal to 
U,' before evaluating (34-36). PSAM is about 0.9 dB worse 
than the ideal system at zero Doppler, and only about 2.4 dB 
worse than ideal at 5% Doppler. Since 0.7 dl3 of the loss is 
due to the power spent in the pilot symbols, performance can 
be improved further at low Doppler values by spacing the 
pilot symbols more widely, though this increases the delay. 

In comparing 16QAM with BPSK (Fig. 5), note that the 
16QAM SER should be divided by four to obtain the equiva- 
lent BER of a Gray coded constellation. Thus the performance 
penalty of 16QAM is 3 dB in comparing ideal reference 
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SER performance of optimized PSAM for I6QAM. Fig. 10. 

systems, and about 2.1 dB in comparing 16QAM to BPSK at 
5% Doppler. 

Also shown on Fig. 10 as SS PSAM is the performance of 
a system using the three-point interpolator coefficients speci- 
fied in [7], calculated with the method of Section IV-A after 
substituting those coefficients in (18). The frame size is 7. 
For zero Doppler, the performance is slightly worse than that 
of the optimized coefficients at 5 % Doppler. At 1 % Doppler, 
the performance is unacceptable. It is worth noting that these 
coefficients produce a strong dependence of SER on position 
within the frame: about 33% at zero Doppler, and over an 
order of magnitude at 1 % Doppler. The comparison demon- 
strates the value of both the optimization and the use of a 
longer interpolator. 

E. I6QAM With Mismatched Coeficients 
As noted in Section HI-F, the operating point of a system 

could well differ from that for which the coefficients are 
optimized. Fig. 11 shows the performance of a system in 
which the optimization point is y b  = 30 dB, f,T = 0, fDT 
= 0.05. The general behavior is like that in Fig. 6, for 
BPSK: the SER is unaffected by frequency offset and Doppler 
spread up to 5 % ;  however, if the combination of offset and 
Doppler exceeds the interpolation filter bandwidth, a signifi- 
cant error floor appears. 

V. CONCLUSION 

Pilot symbol assisted modulation is relatively simple to 
implement. The transmitter just inserts known symbols peri- 
odically, so there is no change in pulse shape or peak to 
average power ratio. The receiver interpolates the channel 
measurements provided by the pilot symbols to obtain an 
amplitude and phase reference for detection. The pilot sym- 
bols lower the effective bit rate by about 14% if the Doppler 
spread is 5% of the symbol rate. For smaller Dopper values, 
though, the loss of capacity is much less: about 5 % for a 1 % 
Doppler spread. Minor drawbacks include the delay and 
buffer space required at the receiver for interpolation. How- 
ever, the good error performance, the removal of the error 
floor, and the enabling of multilevel signal formats outweigh 
these deficiencies. 

Eb/No (dB) 

Fig. 1 1 .  PSAM 16QAM: Mismatched with coefficients optimized for 
-yb = 30 dB, foT = 0, fDT = 0.05. 

PSAM is straightforward to analyze. We obtain analytical 
expressions for BER in BPSK and QPSK, for a tight upper 
bound on SER in 16QAM, and for the optimum interpolation 
coefficients. For BPSK and QPSK, optimized PSAM's loss 
compared with the unachievable coherent detection is only 1 
dB for very slow fading, and it can be reduced further by 
transmitting pilot symbols less frequently. Even at 5% 
Doppler, the loss is only 3 dB. There is no error floor, as 
there is in differential detection. Moreover, optimized PSAM 
outperforms differential detection at any values of Doppler 
and SNR. 

Comparison with TTIB is also favorable. PSAM is less 
complex at both the transmitter and receiver, and does not 
introduce envelope fluctuations. The loss of capacity, or 
bandwidth, is somewhat lower in PSAM, and the header 
preceding each transmission can be much shorter than in 
TTIB. In addition PSAM does not suffer the 3 dB perfor- 
mance penalty incurred by TTIB due to the latter's require- 
ment for differential encoding. 

For 16QAM, optimized PSAM is 0.9 dB poorer in very 
slow fading than the unachievable system with perfect phase 
and amplitude reference, and is 2.4 dB poorer at 5% Doppler. 
A comparison PSAM system using previously published in- 
terpolation coefficients [7] has poorer performance in very 
slow fading than optimized PSAM at 5% Doppler, and has a 
large irreducible error rate at 1 % Doppler. 

In an operational system, both Doppler and frequency 
offset are variable, so that PSAM is unlikely to be optimized 
at all times. When the coefficients are optimized for a worst 
case Doppler value, the performance for smaller Doppler and 
offset values is the same as for that worst case. However, if 
the combined Doppler and frequency offset exceeds the filter 
bandwidth, a significant error floor appears. This indicates 
the importance of correctly identifying the worst case. A 
possible remedy is to make the coefficients adaptive. 

APPENDIX 
SUMMARY OF CORRELATION COEFFICIENTS FOR 16QAM 

For the reader's convenience, we have listed below the 
correlation coefficients of the four distinct cell types, for 
which representative symbols are: 6 ,  = 1 + j (interior cell); 
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b, = 1 + j 3  (edge cell); b, = 3 + j (another edge cell); and 
b4 = 3 + j 3  (comer cell). 

p , ,  = b , U , 2 , ( (  1 b, I ,U; + 1 ) U p 2  

p,, = -jb,u.,’u(( 1 b, I *U; + l)u;)-1/2 

p I 3  = (2.: - bla.,’,,)((4u,2 - 4Re  [ b,~.,’~] 

+ 1 b, 1%; + 1 ) u y 2  

+Jb11%,2+ 1)u;)-li2 

pI4  = (2u: +jblu,2,,)((4u,2 - 41m [ b,c~,2~] 

p,, = b,u,,(( I b, I *U; + l)u;)-”* 

p,, = (2.: - b,~. , ’~)((4~7,2 - 4Re  [ ~ , U ; ~ V ]  
+ I  b, I”.,’ + l)u;)-l/* 

+ l b 2 1 2 U , 2  + l)u;)-l/* 

- 4 ~m [ b, U;,,] 

2u; + l)u,2) - 

p3, = ( - 2 u ~ + b 3 u ~ u ) ( ( 4 u ~ - 4 R e [ b , u ~ , , ]  

+ I  b 3 I 2 U , 2  + l)u;)-I/* 

+Ib3I2a,2+ l)u:)-l/* 

+ I b 4 p 7 , 2 +  l)u:)-1/2 

+Ib412U.,’ + 1 ) u p 2  

p33 = (2.: + jb3u.,’,,)((4u: - 41m [ b,~:~,]  

p4, = (-2u: + b4a.,’,,)((4u,2 - 4 R e  [ b , ~ ; ~ ]  

p4, = (-2.: - j b , ~ ; ~ , ) ( ( 4 ~ , 2  - 41m [ b,~.,’,,] 

where the variances u.,’, U;, and U;,, are given in (11) and 
(18). 
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