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Optimum Table Spacing in Predistorting
Amplifier Linearizers

James K. Cavers

Abstract—Radio frequency (RF) power amplifiers require lin-
earization to reduce the intermodulation (IM) power if the signal
does not have a constant envelope. Digital predistortion (PD) is
one of the more successful methods. However, implementations
usually employ uniform spacing of the PD lookup table entries,
since the question of optimum nonuniform spacing has been
unresolved. This paper provides the solution: a way to compute
the IM for different spacing methods, a comparison of several
table spacing schemes, a derivation of the optimum table spacing
method, and a demonstration that the IM of optimum spacing is
only a few decibels lower than that of equal spacing by amplitude
when variations in operating point are considered.

Index Terms—Linearization, power amplifiers, radio transceiv-
ers.

I. INTRODUCTION

A RADIO frequency (RF) power amplifier (PA) is a non-
linear device. When it carries a signal that does not have

a constant envelope, such as linear modulation, a group of
carriers or the sum of several code-division multiple-access
(CDMA) signals, the PA generates intermodulation (IM) dis-
tortion. Since the IM power falls into adjacent channels as
interference, the design of linearizers has become a key
technology in modem mobile and personal communication
transceivers.

A powerful type of linearizer is the digital predistorter (PD)
[1]–[5], which incorporates a lookup table (LUT) containing
a representation of the inverse characteristic of the amplifier.
The cascade of PD and PA is almost perfectly linear. Because
it is not tied to a low-order parametric model (such as a
polynomial) and is not sensitive to loop delay, the digital PD
provides excellent IM suppression.

Reported work has the entries equispaced in power [1], [2],
[4], because of its computational simplicity, or equispaced in
amplitude [3], [5], because it frequently provides greater IM
reduction. Most authors [1], [3]–[5] also note that nonuniform
spacing, in which table entries are more closely spaced where
the amplifier characteristics vary sharply, would provide better
performance. Beyond this observation, however, there has
been no progress to date on nonuniform spacing.

This paper provides answers in nonuniform spacing. It
demonstrates how to calculate the IM power for arbitrary
spacing, by introducing a companding function into table
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Fig. 1. Relation of predistorter to power amplifier.

indexing. It then obtains a simple expression for the optimum
spacing of LUT entries for a given amplifier, modulation
format, and number of table entries. Numerical results compare
the reduction in IM power using optimized spacing with
that achievable by simpler methods, including spacing that is
uniform in amplitude, power and-law amplitude. The results
reported here are related to, and as basic as, the theory of
optimum quantization [6].

II. M ODELS

A. Component Models

Fig. 1 shows the predistorter and PA as a complex baseband
model (in the actual circuit, the PA is an RF device, and there
is a quadrature modulator between PD and PA). The complex
envelope of the modulation enters from a modem or
analog speech processor, and the PD applies a memoryless
nonlinearity to produce the predistorted signal according
to

(1)

where is the amplitude of the modulation and
is the complex gain of the predistorter, which summarizes

AM/AM and AM/PM effects. The PA is modeled similarly,
with the amplifier output given by

(2)

where is the amplitude of the predistorted
signal and is the complex gain of the amplifier. For
convenience in the analysis, we assume the amplifier to be nor-
malized so that saturation occurs at unit amplitude of its input
and results in unit output amplitude; equivalently, .
Fig. 2 shows a typical class AB amplifier characteristic, with
the transfer characteristic (amplitude out versus amplitude in)
and the magnitude and phase of the complex gain.

Ideally, the cascade of PD and PA produces a simple linear
gain , so that . Substitution of (1) into (2)
shows that the condition to be satisfied by the optimum PD
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Fig. 2. Characteristics of the Class AB amplifier.

Fig. 3. Internal structure of the predistorter.

complex gain, denoted , is

(3)

where

(4)

is defined for notational convenience.
The derivatives of the complex gains and

are important. Because it occurs frequently,
we also define

(5)

Note that .

B. Structure of Predistorter

As shown in Fig. 3, the PD implements (1) using a LUT
with entries equispaced in, an index variable directly related
to the amplitude . No interpolation is assumed in this
analysis, so the resulting complex gain is piecewise constant.
We assume that adaptation algorithms [1]–[5] make each table
entry optimum in the sense of (3) at the midpoint of its range.

The key to analysis of nonuniform spacing is the com-
panding function inserted between the calculation of

amplitude and the index variable . Because
the amplifier model is normalized to saturate at unit ampli-
tude, it is convenient to define this function over the same
interval. Consequently, and , and it is
monotonically increasing, so that for .
The simplest example is indexing the table by amplitude [3],
[5], where . Indexing by power, as in [1], [2], and
[4], corresponds to .

Regions of where table entries are relatively dense cor-
respond to regions where is relatively large. If the table
contains entries, the width of the bins (i.e., the spacing) in
the domain is . To first order, the corresponding width
of bins in the domain is

(6)

C. Signal PDF and Input Backoff

Because of the nonlinear characteristic, IM power depends
upon the input backoff (IBO), defined as the ratio of actual
input power to input power required for saturation (the latter
value is unity because of amplifier normalization) and upon
the pdf of the signal amplitude. We will model the signal
amplitude statistics using a pdf with a mean square value
of IBO and maximum value of one, to represent clipping at
saturation. This analysis ignores any distortion due to clipping,
since no single-amplifier linearization method can compensate
for it. Because power control and backoff are included in the
amplitude pdf, we can assume that the ideal linear gain ,
without loss of generality. Thus, even after linearization, unit
input amplitude results in unit output amplitude and saturation.

Although the results of this paper apply to any modulation
format, we will use a specific probability density function for
purposes of illustration. It represents multicarrier operation, in
which the number of independent frequency-division multiple-
access (FDMA) or CDMA carriers is sufficient that the their
sum can be approximated as Gaussian. In this case, the
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Fig. 4. Optimum and quantized predistortion function.

amplitude has a truncated Rayleigh pdf

IBO IBO IBO
(7)

III. D ISTORTION ANALYSIS

A. Residual IM Power

Because the PD is defined only at table points, its complex
gain is slightly in error at other input values, producing an error

(8)

in the PA output. If is the perturbed complex
gain, then from (1) to (4) the output error is

(9)

where the approximation is to first order in. Next, consider
a single bin in the domain, as shown in Fig. 4, and assume
that its table entry is optimized at the midpoint of the bin,
i.e., its value is . At nearby amplitudes in
the bin, the piecewise constant table has a gain error

(10)

Substitution into (9) gives the output error as

(11)

We can relate the derivatives and by substituting (4) into
(3) and differentiating, to obtain

(12)

Substituting (12) into (11), then using (3) and the convention
that , we have

(13)

Next, for small bins we can expect that is uniformly
distributed across the bin with zero mean, and that, ,

and do not change appreciably. In this case, the IM power
contributed by the bin is the expectation

(14)

where is the width of the bin.
The development in (8) to (14) parallels that in [1], where

the amplifier characteristic is represented as a function of
instantaneous power, instead of amplitude. It is also related
to [5], where trigonometric relations are employed instead.

We link (14) with the effect of the compander by substituting
(6) to obtain the IM as a function of input level. Finally, we
take the expectation over the signal amplitude pdf to obtain
the total output power as

(15)

where is the nonnegative function

(16)

By means of (15), we can calculate the IM power resulting
from any companding function .

B. Optimized Spacing

What is the best spacing of PD table entries? Equivalently,
what is the best companding function? To find out, we mini-
mize (15) subject to the constraints , and

for . Using a Lagrange multiplier to
represent the constraint, we minimize

(17)

Setting the gradient with respect to to zero, we have
the optimum function

(18)

Substituting this function into the constraint, we have

(19)

and

(20)

Note that the optimum companding function, unlike fixed
functions such as amplitude, power or-law companding,
depends on both the amplifier and the signal pdf and backoff.

What is the performance of optimum spacing? Substitute
(20) into (15) to obtain the lowest possible IM power for
a given amplifier, modulation, backoff, and number of table
entries

(21)



1702 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 48, NO. 5, SEPTEMBER 1999

Fig. 5. Derivatives of companding functions.

Fig. 6. Distribution of IM power by amplitude at 3-dB backoff.

IV. PERFORMANCE OFSELECTED COMPANDING FUNCTIONS

In this section, we compare the IM resulting from four
different companding functions. The first two are for equal
spacing in amplitude and in power, respectively

amplitude

power (22)

Clearly, equispacing by power makes entries denser near
saturation, at the expense of the cutoff region. This would not
be unreasonable if one were linearizing a Class A amplifier
to obtain more power efficiency. However, it is more likely

that Classes AB or B amplifiers would be employed, and
we shall see below that equispacing by power has significant
disadvantages, especially in a system with power control where
large backoff values might be used. For the third function,
we try -law amplitude, in the hope that it provides a more
constant signal to IM ratio as the backoff is varied

law (23)
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Fig. 7. Total IM power as a function of input backoff.

Fig. 8. IM to signal power ratio as a function of input backoff.

Their performance is obtained from (15). The fourth compand-
ing function is the optimum function (20), with performance
given by (21) if it is optimized at every IBO value. We will
also examine (20), optimized at a specific IBO value but used
at all backoffs; in this case, we again use (15) to calculate
IM power.

The first point of interest is the density, or reciprocal
spacing, of table entries. From (6), the density is proportional
to the derivative of the companding function. Fig. 5 shows that
optimum spacing provides a balance between the saturation
and cutoff regions. In contrast, spacing by power makes entries
dense near saturation, andlaw concentrates entries at low-

amplitude levels. Also of interest is the way the resulting IM
power is distributed in amplitude. This quantity is given by the
integrand in (15) and is shown in Fig. 6 for a table of 64 entries
and a backoff of 3 dB. It can be seen that optimum indexing
results in the most constant distribution of IM power, followed
by equispacing in amplitude. In contrast, spacing by power
and by law suffer from significant IM power generation at
low levels and high levels, respectively, because their table
entries are unnecessarily concentrated at the other end of the
amplitude range. The total IM power , shown in Fig. 7 as
a function of backoff IBO, follows in a predictable way from
these comments; power spacing, for example, produces more
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Fig. 9. IM to signal power ratio using companding functions optimized for�3- and�10-dB IBO.

IM power when the amplifier backoff increases, and-law
spacing produces less.

The primary quality measure is the ratio of IM power to
signal power, given on a per-sample basis by IBO. The
corresponding ratio of power spectra is given approximately
by a further multiplication by the ratio of signal bandwidth
to sampling rate, since the IM power is relatively white
[1]. Fig. 8 shows the per-sample result for a table of 64
entries. As expected, equispacing in power degrades rapidly
with greater backoff, for two reasons: the lower levels have
greater distortion power, and the signal power itself is reduced.
Also as expected, spacing bylaw gives relatively constant
performance, since IM power and signal power increase and
decrease together. Unfortunately, its performance, though con-
siderably better than spacing by power at greater backoffs, is
everywhere much poorer than spacing by amplitude, with a
disparity of 10 dB at small to moderate backoffs. Optimum
spacing produces between 1–4 dB less IM power than spacing
by amplitude. We must remember, though, that the optimum
companding function depends on amplitude and pdf, which
means that a different function, or distribution of spacing, is
required at every backoff value. This is certainly possible by
means of a separate table storing the break points for every
allowable backoff value, but it is cumbersome.

This introduces the question of mismatch between opti-
mization conditions and operating conditions. In particular, we
consider a companding function optimized for one particular
backoff value, but used at all backoffs, simply as a matter
of simplified design. Fig. 9 shows the result for optimization
IBO values of 3 and 10 dB. Clearly, it is preferable to optimize
at the higher value. Equally clearly, the result provides only
about 1-dB improvement compared to the simpler spacing by
amplitude.

To assess how robust these results are to changes of am-
plifier or modulation, we repeated the calculations for the

BLU-98 transistor used in related studies [3], biased for Class
AB operation, and for a pdf resembling that of QPSK with
35% root cosine shaping. Apart from changes in absolute
level, the relative performance of the four table spacing
methods was very similar to the results displayed here. When
biased for Class B operation, the difference between spacing
by amplitude and spacing optimized for the operating point
increases by about 2 dB, so that the gap is about 6 dB for
large backoff and 3 dB for small backoff, and-law spacing
is roughly parallel to amplitude spacing. In other respects, the
curves and the conclusions are similar to those for Class AB.

V. CONCLUSIONS

This paper has presented two new basic results: a systematic
way to describe and analyze arbitrary nonuniform spacing
of predistortion table entries; and simple expressions for the
optimum nonuniform spacing and its performance. It also
provided a numerical comparison of four candidate methods:
equispacing by amplitude, power andlaw, all of which are
fixed, and optimum spacing, which depends on amplifier and
backoff.

We have seen that, for a Class AB amplifier, equispacing by
power is by far the worst method almost everywhere, and that
equispacing by law is least dependent on the changes in
backoff level experienced in a system with dynamic power
control. However, equispacing by amplitude produces less
IM power than the other two fixed methods, by amounts
ranging from 4 to 10 dB. As for optimized spacing, it is from
1–4 dB better than equispacing by amplitude. Unfortunately,
an operating scenario in which the spacing is optimized
for one backoff value but used at all backoffs produces
disappointing results—when optimized for small backoffs, it
is only about 1 dB better than the simpler equispacing by
amplitude, and when optimized for large backoffs, it is far
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worse than amplitude spacing over most of the range. We note
finally that equispacing by power may still be appropriate for a
Class A amplifier in a system without dynamic power control.

We conclude from this investigation that making predistor-
tion tables equispaced in amplitude is an excellent choice from
an engineering standpoint: it is simple, it does not depend on
amplifier, modulation format or backoff, and its performance
is very close to the limit defined by optimum spacing.
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