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Multiagent Immediate Incremental View Maintenance
for Data Warehouses

Gary C. H. Yeung and William A. Gruver

Abstract—Data warehouse systems typically designate downtime for
view maintenance, ranging from tens of minutes to hours depending on
the system size. In this paper, we develop a multiagent system that achieves
immediate incremental view maintenance (ITVM) for continuous updating
of data warehouse views. We describe an IIVM system that processes
updates as transactions are executed at the underlying data sources to
eliminate view maintenance downtime for the data warehouse—a crucial
requirement for internet applications. The use of a multiagent framework
provides considerable process speed improvement when compared with
other IIVM systems. Since agents are used to delegate the data sources and
warehouse views, it is easy to reorganize the components of the system.
Through the use of cooperative agents, the data consistency of IIVM can
be easily maintained. The test results from this research show that the
proposed system increases the availability of the data warehouse while
preserving a stringent requirement on data consistency.

Index Terms—Data warehouse, multiagent, view maintenance.

I. INTRODUCTION

View maintenance requires updating the materialized views in a
database system as changes are made to the underlying data. View
maintenance is well understood in conventional transaction database
systems. Most prior research in view maintenance has been concerned
with deferred incremental view maintenance (DIVM), in which
updates to the underlying data are logged and applied to modify the
materialized views collectively during system downtime. DIVM,
the primary view maintenance method adopted by most commercial
data warehousing products, assumes that the data warehouse has a
convenient system downtime. For data warehouses that provide global
access, however, downtime may not be acceptable. The time required
for view maintenance requirement is a major limitation on the size of
a data warehouse.

Data warehouse views may also be updated by the use of immediate
incremental view maintenance (IIVM). In this technique, changes to
the underlying data are applied immediately and individually to the
materialized views. Potential data inconsistency due to asynchronous
messaging, however, constrains its usage in commercial systems. In
this study, we propose a multiagent framework for performing IIVM
in data warehousing with parallel processing.

Hanson [1] conducted one of the earliest studies of DIVM in which
differential tables were maintained on base tables that contain the
suspended updates that have not been applied to the database state.
Colby [2] applied base logs and differential tables for periodic update
of views, a concept that is similar to taking snapshots from every state
of change in the base tables. Mumick [3] improved Colby’s method
by storing changes of base tables in a Summary-Delta table in which
the information is updated to the summary tables during off-hours.
Gupta [4] proposed a counting algorithm to keep track on the order of
updates for each tuple in a view so that updates can be applied at the
correct data warehouse states. Hull [5] decomposed an integrated view
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Fig. 1. Concurrent update causing interference.

into materialized, partially materialized, and virtual relations. Media-
tors were used in his system to optimize view usage by making less
frequently accessed relations to be virtual. In research by Kawaguchi
[6], a concurrency theory was developed based upon conflicts and
serialization graphs in the presence of deferred materialized views.

Zhuge [7] initiated research into IIVM by proposing a series of algo-
rithms (called strobe algorithms) to perform IIVM for select-project-
join (SPJ) warehouse views. Strobe algorithms employ a monitoring
and merging process to propagate updates to the data warehouse from
distributed data sources. Compensation queries are required if inter-
fering updates are detected at the sources. The SWEEP algorithm pro-
posed by Agrawal [9] eliminated the need for compensation queries
by a local compensation process, thereby providing a significant re-
duction in processing time. Ross [10] improved the view maintenance
process by creating additional views, which is similar to subtasking
view maintenance processes into simpler subprocesses. Ling and Liu
[11] investigated message transmission disorders due to network delay.
They issued time stamps at the sources to track the order of update no-
tifications. In research by Chen [12], a global counter enabled solution
of the same anomaly detection problem.

The main challenge in using IIVM is the need to provide compen-
sation for the concurrent source update that interferes with the view
update in process. This is due to the assumption that the underlying
data sources are autonomous and independent of the data warehouse.
The data warehouse must intelligently perform compensation when a
concurrent update occurs. Parallel processing is often avoided due to a
high probability of anomalies. The main contribution of our study is a
framework for parallel processing within IIVM.

Research has also been conducted to apply agents to data ware-
housing and data mining. Bose [13] applied software agents for data-
mining applications. His approach used agents to perform data selec-
tion, data transformation, data mining, and result interpretation. Belo
[14] proposed using agents and the contract net protocol (CNP) to per-
form data trading between data-warehousing systems. Ram [15] pro-
posed using a blackboard-based cooperative system for integrating data
from heterogeneous databases with different schemas. The blackboard
facilitates communication among human and computational agents.

II. MULTIAGENT SYSTEM
A. Problem Statement

We consider a system designed to perform IIVM for a data ware-
house. The materialized views in the data warehouse are assumed to be
SPJ views. The data sources are autonomous and there is no coordina-
tion between data sources. The data sources have no knowledge about
the existence of a data warehouse. We assume that for a given source,

updates and queries are executed atomically. For example, we do not
allow an update to be performed on a data item when a query on the
same item is in process. We assume that the data warehouse receives
the update notifications in the same order as they were sent from the
data sources. A violation of this assumption was investigated in [11]
and [12].

For a typical warehouse view V' defined by

V= HAH

pcoud(Rl ... DAR; b <., > aAR,) )

as an update AR; (an update to the base relation R;) is received at the
data warehouse, the incremental change to the view is computed by
querying the data sources to compute the join, and then applying the
select and project operations. The query to be evaluated for the join is
expressed as

Q=Ri>da...b<dAR;>«...p4R,. 2)
Thus, the view must be reassembled by making queries for each re-
lation in the SPJ expression. This entails making queries to each of the
sources that hold the relations Ri, Ro, ..., R,.
Using relational algebra to illustrate, assume two relations I?; and
R5 and a view defined as a natural join over the relations V' = R ><R>.

As a result of an update AR, the new view should be

View = (R] + AR ) >aRe = Ry > <Ry + AR ><aR2.  (3)

Since the data warehouse already has R, > <R, it only needs to
compute a query ()1 = AR, > <R at the data source containing Ro
and incorporate the results into the materialized view. Difficulties arise,
however, when two concurrent updates overlap. This scenario is shown
in Fig. 1.

A local update for Ro occurs at Source 2, causing query 1 to re-
turn the modified result. The reason for the difficulty is that the source
transactions are allowed to occur at Source 2 between times 1 and 2.
However, to correctly evaluate A Ry > <R, the state of Source 2 may
not change between times 1 and 2.

Compensation must be performed to offset the effect of the inter-
fering update. The data warehouse should perform a check after re-
ceiving each query result to see whether a concurrent update has altered
the source state before the query. The properly compensated view-tuple
should be

AV = ARy > <a(Ry — ARy). 4)
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Fig. 2. Sequence diagram for a multiagent IIVM process.

B. Warehouse Agents

In the proposed multiagent system (MAS), we shall design agents
to accomplish the tasks involved in [IVM. The MAS resembles an as-
sembly line so that tasks are passed in a strict sequence through the
system while suitable agents operate concurrently on the tasks. The
finished product would be a set of properly compensated view-tuples
for the warehouse views.

The Update Agent is responsible for monitoring the source. Each up-
date agent delegates a single data source. The update agent stores infor-
mation regarding the source (source meta-data), including the locator
(URL) for the data table (network address, database name, connection
protocol) and the relation identities. The functions of the update agent
are: 1) polling a data source for updates and 2) converting the update
information into a task request.

The View Agent is responsible for managing a data warehouse view.
A view agent holds the metadata regarding a view, such as the SPJ view
definition and the locators of the view relations. The view agent holds
the mapping of the source relations to the view relations. The functions
of the view agent are: 1) checking if an update is associated with the
view it represents; 2) monitoring for concurrent updates; and 3) mod-
ifying warehouse views. If a view agent detects that the incoming up-
dates interferes with another update in process, it passes the incoming
update to the cooperating extract agent to perform compensation. Each
view agent delegates a single warehouse materialized view.

The Extract Agent is responsible for querying the sources upon re-
quest. The extract agent interprets the query request and queries the
specified sources. It does not possess metadata for a particular source
or view. The view and the update agents supply the query information
through the task request. If requested by the view agent, the extract
agent can perform compensation to the queried result.
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Blackboard architecture is adopted as the coordination method for
the agents. A Blackboard is a common knowledge area for the agents
to post and receive task requests. Fig. 2 is the sequence diagram illus-
trating the interaction between the agents and the blackboard. This ex-
ample demonstrates how concurrent updates are handled by the MAS
through local compensation.

C. Comparison With Other I[IVM Systems

We shall give an overview on how MAS provides advantages for
different stages of IIVM over other available systems in terms of pro-
cessing time. When an update notification is received, the data ware-
house must search to determine which views should be updated. The
C-Strobe [7] and SWEEP [9] systems execute a sequential scan that
includes all the views in the system. For the proposed MAS, the update
notification is distributed to the view agents to concurrently perform
this activity. The view agents can proceed to the following update in
the queue without waiting for the current update to be finished.

To assemble the view-tuple AV for an SPJ view, the data warehouse
issues a series of subqueries to the distributed sources to recompute
the join relations. The existing systems perform the subqueries in a
sequence. In the proposed MAS, multiple extract agents can perform
subqueries of the same or different updates concurrently.

The data warehouse must intelligently compensate for the changes
in the source made by a concurrent update. The local compensation
method eliminates the need for compensation queries by checking for
concurrent updates after each subquery. This method is adopted by the
MAS. Since updates are initially assigned to the view agents, concur-
rent update checking is performed on a view agent’s update queue,
which is much shorter than update queue of the entire system, as per-
formed by Zhuge [7].
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In the proposed MAS, a warehouse view modification is performed
by the view agents, according to the arrival order of the update notifi-
cations from the sources. If an update affects multiple views, the view
agents cooperate to perform update modification simultaneously. This
action improves data consistency in the data warehouse. Other systems
disregard the fact that an update could affect multiple views and queue
the updates sequentially.

D. Failure Handling

In transactional database systems, failure recovery deals with han-
dling transactions when system crashes occur. The central issue is that
the atomicity of every transaction must be maintained in the event of
a system crash. Either the entire transaction is completed or nothing is
completed. The rollback operation is often required to undo partially
completed transactions. In transactional database systems, failing to re-
cover an interrupted transaction could cause permanent database errors
that cannot be rectified later.

The failure recovery in data warehouse view maintenance is dif-
ferent from that in conventional transaction processing. A data ware-
house view maintenance failure could interrupt a view-tuple assembly
process and leave it only partially complete. The point of interruption
could occur before the update notification is sent, during subqueries,
or at view modification. Instead of trying to recover the updates at the
time of failure, it is often more convenient in data warehousing to re-
compute the views from the source data. Therefore, the objective of
failure recovery in a data warehousing system should be on failure de-
tection and actions to maintain view consistency for the users at any
time, instead of recovering the interrupted operation.

There are many possible reasons for the failure of a source, including
networks, hardware (disk storage), or software (database management
system). The type of source failure is usually unknown to the data ware-
house. Thus, it is uncertain whether transactions are active or updates
are sent from the failed sources. Our approach is to maintain the ware-
house views in a consistent prior state and when the failure at the source
or warehouse is resolved, the warehouse views are recomputed. The
failure detection methodology of MAS is described here.

In general, there are two possible types of failure in a data ware-
housing system: 1) failure of data sources and 2) failure of the data
warehouse.

1) Failure of data sources. Such failures can be detected when an
update agent fails to query the source for update or an extract
agent fails to make queries to the source, causing SQL excep-
tions. In this case, the IIVM system should stop processing up-
dates and maintain a consistent data warehouse state for the
users. Note that if the current update is dropped, the warehouse
will simply stay at the prior consistent state.

2) Failure of the data warehouse. Such failures are detected when a
view agent fails to connect to the warehouse or update the ware-
house view, causing an SQL exception. In that case, the [IVM
system should stop processing updates and maintain a consistent
prior data warehouse state for the users.

III. EXPERIMENTAL RESULTS

In our experimental studies, we compared the performance of our
proposed MAS-IIVM with the traditional IIVM algorithms in terms of
processing time required to perform updates. The traditional algorithms
were emulated in the same experimental setup by using a single thread
for sequential processing.

The results demonstrate that the MAS-IIVM system, in which
processes operated in parallel, had better performance than the tra-
ditional IIVM system. We verified that MAS-IIVM produces better
performance without incurring data inconsistency.

Time Latency vs. Data Warehouse Size
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The experimental MAS-IIVM was programmed in Java. Both the
data sources and data warehouse were managed using Microsoft SQL
Server 2000 implemented on the same multiple-CPU data server. All
data tables were relational data tables and utilized SPJ schema to es-
tablish views in the data warehouse. The blackboard, update agents,
extract agents, and view agents ran on separate threads.

The effect of the data warehouse size on time latency is presented in
Fig. 3. For MAS, view agents check the update in parallel processes.
Most of these processes are concurrent with the querying processes
by the extract agents. Immediately after the earliest view agent fin-
ished checking and posts the query task, an extract agent can start to
perform the queries. The C-Strobe and SWEEP systems perform all
checking processes and querying processes in a sequence. Therefore,
this methodology is directly influenced by the warehouse size.

Fig. 4 shows the time recorded as the update traffic is increased. The
update traffic is the number of pending updates in the system queue.
Other systems require more processing time, since checking is per-
formed on the system queue for interfering updates after each subquery.
For MAS, the extract agent only needs to check the updates assigned
to one view agent. The time saving is tremendous if the update traffic
is high.

Fig. 5 shows the time latency recorded as the number of views af-
fected by an update increases. The concurrent processing of MAS can
provide a significant advantage, since the subqueries and view modifi-
cations can be performed in parallel. Other IIVM systems perform the
processes sequentially.

The effect of the number of available extract agents on the total query
time is presented in Fig. 6. The query processes of the C-Strobe and
SWEEP systems are equivalent to the MAS using one extract agent.
If a single extract agent is used in MAS, the total query time is the
same as other systems. As the number of extract agents increases in
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MAS, the total query time decreases since more tasks can be performed
concurrently.

In summary, the advantage provided by MAS is that the update sub-
processes for different updates can be performed concurrently. The per-
formance gain is more significant as the system size increases. Even
though we expect that a parallel system would provide better perfor-
mance than a sequential system, our test results showed that a parallel
process is feasible and is simple to implement with the help of a mul-
tiagent framework.

IV. DATA CONSISTENCY

The data consistency of a data warehouse is intact if data “make
sense” when being queried by client programs. DIVM can provide
strict consistency since changes of base data are stored and applied
in batches during downtime during which no transaction can interfere
with the view maintenance process. After the changes are applied, the
views in the data warehouse match perfectly with current state of the
sources. For a data warehouse that adopts IIVM, the consistency con-
dition must be enforced by the data warehouse so that the views are
consistent at any time of operation and no erroneous updates occur.
According to prior researches, there are different levels of consistency
and a higher consistency level usually requires a more complex algo-
rithm to implement.

Consistency levels can be used to specify the consistency require-
ment for view maintenance. In general, the following four levels can be
considered, in ascending order of consistency level [7]: convergence,
weak consistency, strong consistency, and completeness.

Convergence—requires only that the final data warehouse view be
consistent with the source data after all update activities have been com-
pleted.

Weak Consistency—requires that each data warehouse view reflect
a valid state at each source but the data warehouse view could reflect a
different time state at each source.

Strong Consistency—requires not only that each data warehouse
view reflect a valid source state at each source, but also that the source
states reflected by a data warehouse view must be of the same global
time state.

Completeness—requires not only that each data warehouse view is
strongly consistent with the sources, but also that all activities at the
sources must be reflected by the data warehouse views.

Our MAS was designed to enforce the completeness consistency
level. The C-Strobe and the SWEEP algorithms also enforce the com-
pleteness consistency level, which is the main reason we used these
latter systems in our comparison.

For IIVM, if the effect of the concurrent update is not compensated,
even the convergence requirement cannot be satisfied. This is because
the effect of a concurrent update could be duplicated in the data ware-
house view, causing permanent errors in the warehouse view.

Through the use of local compensation, MAS ensures that the effect
of the concurrent update is properly compensated under all concurrent
update scenarios. The data warehouse is able to capture the original
source state in every case since compensation corrects the queried an-
swer when a concurrent update occurred at the source. The concur-
rent update is then queued according to the order of arrival. Using this
method, every source state is reflected in the data warehouse in the same
order as the sources. Therefore, the completeness consistency level is
maintained.

V. CONCLUSION

We advocated the need for IIVM to perform continuous view mainte-
nance in real-world data warehouses. MAS described by this study can
perform IIVM and achieve a stringent level of data consistency of com-
pleteness. The multiagent framework applied in our system improved
the sequential update processes found in other IIVM systems. The op-
eration of IIVM is time critical and is usually too complex for applying
parallel processing since anomalies can easily occur. We demonstrated
that the multiagent IIVM system provides higher data warehouse avail-
ability as the update traffic or the warehouse size increases. By testing
different IIVM systems, we demonstrated that MAS reduces the up-
date processing time as the system size increases. MAS allows mul-
tiple agents to perform query tasks concurrently. We demonstrated that
having more agents in the system increases performance, although the
number of agents is limited by processing ability. Failures can be de-
tected more quickly and easily by agents since they constantly interact
with the sources and the data warehouse. In our proposed MAS, since
the metadata for the warehouse views and the sources are completely
distributed, the system can be increased or decreased in size by adding
or removing agents.
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