Extended Octree Distance Map (EODM) :
A New Representation for Collision Detection

by

Maria del Carmen C. Amézquita Benitez

B.A., Universidad de las Américas Puebla, México 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE
in the School
of

Engineering Science

© Maria del Carmen C. Amézquita Benitez 2002
SIMON FRASER UNIVERSITY
October 2001

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Name:
Degree:

Title of thesis:

Examining Committee:

Date Approved:

APPROVAL

Maria del Carmen C. Amézquita Benitez
Master of Applied Science

Extended Octree Distance Map (EODM) :

A New Representation for Collision Detection

Professor Andrew H. Rawicz.

Chairperson

Professor Kamal K. Gupta, Senior Supervisor

School of Engineering Science

Professor Binay Battacharya, Supervisor

School of Computing Science

Professor John Dill, Examiner

Professor, School of Engineering Science

i

Abstract

In this document we propose a new representation called Extended Octree Distance Map
(EODM) for efficient collision detection in static environments. EODM constitutes a com-
plete and systematic hierarchical representation for distance maps. Like other methodolo-
gies, it utilizes an octree as the base representation. Along the perimeter of each white node
in the octree, it stores a distance function that represents the distance of each boundary
point of the white node to the obstacle closest to that point. EODM is computed once and
then repeatedly used for collision detection queries. We present algorithms for creating the
EODM and use it for collision detection. Our experiments in 2D and 3D show that while
EODM requires more memory than an octree and an ODM, it decreases collision detection

time substantially.

iii

Acknowledgments

I would like to thank all the members of the examining committee for their interest in this
project.

I am extremely grateful for the continuing support and guidance of my supervisory
committee: Dr. Kamal K. Gupta and Dr. Binay Battacharya. Without your observations,
recommendations and dedication this work would not have been possible.

My gratitude also extends to Dr. Andrew Rawicz for his time and to Dr. John Dill for
opening his door, listening and giving me an opportunity in times of confusion.

My deep appreciation and admiration for Brigitte Rabold and all the staff at the School
of Engineering Science Department.

I thank Dr. Ofelia Cervantez, Dr. Warren Greiff, Dr. Juan Manuel Ahuactzin and the
faculty of the Engineering Department from Universidad de las Américas Puebla (UDLA-P)
for their example and encouragement.

Finally, I would also like to thank Consejo Nacional de Ciencia y Tecnologia (CONA-
CYT), Mexican National Science Foundation, for its support during this research from

september 1997 to august 1999.

v

Dedication

To the patience, wisdom and support from my parents. For their labor of love and their
warrior courage through all hardships I put them through.
To the ghosts from the past that allowed me to step on their footsteps and retrace their
journey.
To the solitude and loneliness that allowed me to get to know myself.
To Reza Afrashteh, for the everlasting tea time for the soul.
To Andrea Downie, who taught me to celebrate life through her dance. For her words and
encouraging spirit. For being a true teacher.
To Helen Pinto and Luis Goddyn, with whom the celebration of life became complete.
To my guardian angels Reza Naserasr and Istvan Harmati.
To the uniqueness, complicity and sisterhood of Guadalupe Delgadillo.
To the far away angel that lights my way. For being my inspiration and source of strength

beyond frontiers. Thank you Gabor Vass.

To the infinite blessing of friendship that came in different languages, customs, ideas,
flavors and sounds: Sigal Blay, Laura Chédvez, Caroline Dayyani, Guillermo Ferndndez, Ian
Gipson, Andrew Haskell, Julia Istkevitch, Dulce and Wuilbert Jaramillo, Kamran Kaveh,
Deyra Kelly, Karen and Gaby Kwong, Ming Li, Te mei Li, Qingguo Li, Lin Lin, Shiming
Liu, Tissaphern Mirfakhrai, Herbert Noriega, Helen Pinto, Babak Taati, Xiaoli Zhang and
the people in SFU’s International Club.

Contents

Abstract L e iii
Acknowledgments L. iv
Dedication oL e e e v
Listof Tables o o e e viii
List of Figures e ix
1 Introduction oL 1

1.1 Background: Object Representation for Collision

Detection L 2
1.1.1 Boundary Representationo L. 2
1.1.2 Constructive Solid Geometry (CSG) 3
1.1.3 Sweep Representationso L. 3
1.14 Cell Decomposition oL 3
1.1.5 Hierarchical Representations 4
1.1.6 Quadtrees and Octrees 5

1.2 Related Work: Collision Detection with Spatial
Occupancy Representations 10
1.3 EODM: BasicIdea o e 13
14 Contributions of the Thesis 14
2 Extended Octree Distance Map (EODM): 2D Case 15
2.1 Assumptions and Notation 15
2.1.1 Distance 16
2.1.2 Motivation L Lo 16
2.1.3 Constant time collision detection with d,(s) 17
2.2 2D Collision Detection oo Lo 19

vi

2.3 2D EODM Creation o v v v v i it i e i e e e 22

2.3.1 Computing the intervals along the separators 22

2.3.2 Computing the Voronoi Edge between two endpoints 25

2.3.3 Algorithm Build 2D EODM« o v v v v o v .. 31

3 Extended Octree Distance Map (EODM): 3D Case 33
3.1 Fundamentalso o 35
3.1.1 L, fallsin a whitecell 39

3.1.2 L, overlaps a Nodal Projection 41

3.1.3 Closest Obstacle Point Characterization 43

3.2 3D Collision Detection L o 0. 44
3.3 3D EODM Creation e 47
3.3.1 Projecting theobstacles 49

3.3.2 Computing the intervals for the line separators 50

3.3.3 Computing the Voronoi Edge between two segments 57

3.3.3.1 Voronoi Edge for two endpoints of non-overlapping
segmentsl o oo 58

3.3.3.2 Voronoi Edge for overlapping non-collinear segments 61

3.3.3.3 Voronoi Edge for overlapping collinear segments . . 63

3.4 Algorithm Make EODMt 65

4 Experiments oL 67

4.1 Experiments for 2D models o o oL 67

4.2 Experiments for 3D models o o o oo, 69

5 Conclusions and Future Work 0 o000, 74

5.1 Future Work L 75
Appendices

A Procedure Connect 3D EODM() o ottt 78

B Linking the white cubes with the separators 79

C User’'s Guide e 80

Bibliography o 85

vii

List of Tables

4.1

4.2
4.3
4.4
4.5

Memory usage/Creation Time for Quadtree, ODM, EODM and DM for five workspaces
68

CPU run-time for Quadtree, ODM, EODM and DM for the workspaces 69
Memory usage/Creation Time for Octree, ODM, EODM and DM for five 3D workspaces 70
CPU run-time for Octree, ODM, EODM and DM for the 3D workspaces 70
CPU run-time with 4 robot configurations (159 spheres) 73

viii

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

21
2.2
2.3
2.4
2.5
2.6

2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

Binary array image and its quadtree: a)region b)binary array c)quadtree d)tree . . . 6

Three dimensional object and the octree representation: a)3-D object ¢)Octree d)tree 7

Locational Code and the traversal of the tree 9
Obtaining Cartesian Coordinates from a Location Code for anode N 9
An environment and it’s associated L distancemap 10
Collision detection for a 2-D distance map L. 11

Memory-Runtime trade-offs. We expect EODM to lie somewhere in the shaded

<710 13
The perimeter distance function, dp(s) oL 16
dp(s): the shortest distance between any point in W and an obstacle point 17
Proof of Theorem 1. e 18
Disadvantages applying Ly metric o000 oo oL 19
Collision Detection for a 2D EODM 20

The closest obstacle function o,(s): vertex bs is closest to S in the interval (0,4),

vertex by is closest in the interval (4,8), vertex cz is the closest in the interval (8,10)

and vertex ¢; is closest in the interval (10,12)o 23
Computing the intervals Lo L e 24
Configuration of the endpoints during the Voronoi edge computation 26
Voronoiedge when dx =0 e e 27
Voronoi edge when dy =0 Lo 27
Voronoi edge for de < dy Lo 28
Computing step by step the Voronoi edge whendx <dy 29
Voronoi edge for de >dy e 30
Computing step by step the Voronoi edge whendx >dy 31

ix

3.1 a)Closest obstacles to the top face of W b)d,(s1,s2) for the top faceof W.
3.2 Octree white node and adjacent infinite planes
3.3 Fwegst separates R from OwEgsT - - -« « v o v v v i i e e e e e e e e e e e
3.4 a) L; sphere centered at L: no other obstacle lies inside b) top view
3.5 Distance between a robot in W and its closest obstacle
3.6 Rectangular partition generated by the projection of the obstacles
3.7 Distance intervals stored along a line of the grid
3.8 a) North and West regions of a cell b) Regions for black and white cells of Fwgsr -
3.9 Proof for Lemma 2 with 3D L{ metric« . . o i i i e
3.10 Proof for Lemma 3.b with 3D Ly metric & & v v v v v i i e e
3.11 Robot lyingin an octree oL Lo L Lo e e
3.12 Face separators in 3Do
3.13 Boundaries associated with each Nodal Projection
3.14 Visible obstacle projections from the north boundary of ¢;
3.15 Visible obstacles from Fywgsr fornode 5
3.16 Ordered endpoints forthesweep
3.17 a)Voronoi edge between segments 2 and 32 b)Edge between segments 32 and 7
3.18 a) Edge for segments 33 and 7 b) Current interval is re-assigned from I,,, to I,
3.19 Intervals after the sweep o . e e e
3.20 Case I: w1 > wo without segment overlap
3.21 a)Voronoi edge, no weights b) As wy, wo change, the edge shifts up or down

3.22 Shapes of the Voronoi Edge when computed for endpoints
3.23 Voronoi edge for collinear segments: a) no weight b) weight
3.24 Case I: w; > wo for overlapping segments
3.25 Possible Voronoi edges for overlapping segments for case ¢ in Figure 3.24
3.26 Computing Voronoi Edge for Figure 3.25.d
3.27 Possible Voronoi edge cases for collinear overlapping segments
3.28 Computing the Voronoi edge for two collinear overlapping segments

3.29 Voronoi edge for collinear overlapping segments with equal weight

4.1 Robot manhattan sphere in a 2D environment
4.2 Qualitative Memory/Runtime trade-offs forenv. 5.

4.3 Memory/Runtime trade-offsfor 3Denv. 5

4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3

C.1
C.2
C.3
C4
C.5

Qualitative Memory/Runtime trade-offs for 3D env. 5 71
Robot covered by 159 Ly spheres e 72
Another view of theroboto L 72
Robot arm free of collisiono e 73
Robot arm in collision L 73
Memory-Runtime trade-offs 0. 75
Unnecessary white cells L oo 75
a)Storage of redundant information b)Line separators removal Tl
Format of the input fileo L 80
2D environment from file 256x256.lin. Lo oL oL 81
Testing a 2D robot for collision Lo o oo 82
Testing a 3D robot for collision 83
Testing a robot arm for collision o L. 83

xi

Chapter 1

Introduction

Collision detection is broadly employed in a number of disciplines. Robotics and Computer
Graphics are two of the main current areas. A collision detector constitutes a key building
block for path planners. The performance and efficiency of path planners is critically de-
pendent on the number and speed of collision tests, therefore it has become a fundamental
problem in Robotics [15].

Collision detection is concerned with the efficient and fast solution of the following
problem: “given two objects, O4 and Op, do they interfere?” [22].

Collision avoidance algorithms can be classified into (i) continuous motion collision de-
tection and (ii) static collision detection [10]. The continuous problem involves moving
objects. For each one of the moving objects, its position and velocity is known beforehand
and the collision detection problem is to find if they collide at any instant during a given
time interval. On the other hand, static collision detection “freezes” the objects at a par-
ticular time and any contact or overlap between them is detected [10]. Continuous collision
detection can be discretized at a certain time resolution and treated as a sequence of static
collision detections. Due to the complexity of representing the configuration space (C-space)
of a robot, path planning uses instead a discretized representation of it. At each discrete
point, obtained by sampling and searching the discretized C-space, a collision detection test
is required [15].

Collision detection performance is strongly dependent on the representation that is used
to model the environment. When complex geometric models for obstacles are used, collision
detection becomes a bottleneck in simple path planning applications since they can invest

hours trying to solve a problem due to the “millions” of collision tests (as demonstrated in

CHAPTER 1. INTRODUCTION 2

the Sandros system [4, 23], the work of Kavraki et al. [27] and Jung [25]). Therefore the
search for more efficient approaches for collision detection is crucial in order to produce fast
motion planning applications for the “real world”. Most of the work on collision detection
has used two broad types of representation (i) more “abstract” geometric models (mostly
polyhedral in 2-D and 3-D, but also including curved surfaces) [34], and (ii) “raw” (or
primitive) spatial occupancy maps, which are discretized binary bitmaps (obstacle/free) of
the workspace (closer to what most common range sensors, such as stereo-vision, laser range
finders, and sonars, etc. directly provide). Our motivation for this work comes primarily
from sensor-based motion planning in robotics, where it is natural, easy and straightforward
to represent the workspace as a spatial occupancy map [41].

It is because speed in collision detection is a key issue in efficient path planning that
we have developed our Extended Octree Distance Map (EODM). EODM is a novel colli-
sion detection module for static environments that captures the distance to the obstacles
hierarchically. Using an octree as a base representation, the distance is stored around the
boundaries of each white node in the tree.

The following section will review five models for object representation that have been
used for collision detection. A more detailed description of these approaches can be found
in [12, 17, 22]. Their advantages and drawbacks for collision detection problems are also
presented. In section 1.2 we discuss the research work that has influenced the development
of our EODM. For recent surveys on the state of the art of 3D collision detection please
see [24, 32].

1.1 Background: Object Representation for Collision

Detection

The main approaches to represent objects considered are: Boundary Representations, Con-
structive Solid Geometry, Sweep Representations, Cell Decomposition, and Hierarchical

Representations (particularly Octrees). Their characteristics are described next.

1.1.1 Boundary Representation

An object is represented as a set of bounding faces, composed by edges which are delimited

by vertices. Therefore, this methodology is useful when either objects are polyhedra or they

CHAPTER 1. INTRODUCTION 3

can be approximated by a group of polyhedra. Collision detection schemes test every feature
(faces, edges, vertices) for intersection and with some assumptions the test can be performed
in constant time as in the well known ICOLLIDE [5, 30], RAPID [31] and VCOLLIDE [20]

collision packages.

1.1.2 Constructive Solid Geometry (CSG)

CSG constructs objects from some primitives like blocks, pyramids, cylinders, cones and
spheres. An object is constructed using set operators such as union, intersection, and
difference. The object is represented as a tree where the operators are stored at the internal
nodes and the primitives at the leaves [17]. In contrast with the Boundary Representation
paradigm, CSG does not require an explicit definition of the features of the objects. The
properties of the object are derived bottom-up starting first with the properties of the leaves.
The main advantage of CSG is its simplicity to represent curved and more sophisticated
objects with fewer parameters. However, each time a basic operation is required, the tree
must be evaluated using a depth-first technique. For this reason, interference detection

might lead to expensive and/or complex algorithms.

1.1.3 Sweep Representations

The result of this approach is a volume generated after moving (sweeping) an object along
a trajectory in space. There are two kinds of sweeps, translational (following a linear
trajectory which is also perpendicular to the 2D object) and rotational (where the object
is rotated around an arbitrary axis). A general sweep is the resulting volume, (which may
change in size, orientation or shape), when an arbitrary curved trajectory is used to sweep
the object. The advantage of this method is that a representation can be generated for more
elaborate objects, despite the complexity of their underlying analytical geometry. Checking
for interference between a point robot and an object translates to checking the inclusion of

the point in the swept volume.

1.1.4 Cell Decomposition

Cell Decomposition approaches represent an object as a connected net of cells. Cells can
be identical (commonly squared or triangled) or they can have different sizes. In 3-D,

tetrahedra are employed for the decomposition in such a way that all of them are connected

CHAPTER 1. INTRODUCTION 4

by a face, edge or a vertex. When a grid of cubes (also known as voxels or volume elements)
is used, the approach is called Spatial Occupancy Enumeration, which can be represented
sequentially or hierarchically (described in the next category). Cells are useful when the
nature of the application takes advantage of the topological properties of the objects. Spatial
Occupancy Enumeration is relatively simple to apply because each cell that is totally or
partially occupied by an object has value of 1, otherwise they have a value of zero [22]. Cell
Decomposition has proven to be advantageous for collision detection too, for example, in
the work of Barraquand et. al [2], if a point robot falls in a cell that has a positive value,
an obstacle has been found and a simple comparison betwen the radius of the robot and the
cell value determines the collision/free status of the robot. Even though Cell Decomposition
provides a fast performance during collision detection, it may require a very fine resolution

to represent an object, and hence high memory requirements.

1.1.5 Hierarchical Representations

The main goal of hierarchical representations is to reduce the amount of storage and redun-
dancy of the Cell Decomposition approaches. There are several hierarchical data structures
such as k-d trees, sphere trees, pyramids, bintrees, striptrees, etc. Some of the most practi-
cal in collision detection are quadtrees, octrees [38, 39], and sphere trees [8, 36]. Quadtrees
are a special case of the Spatial Occupancy representation. In general, each node in the
hierarchy is labeled according to the portion of the object that it represents: a node is ezte-
rior if it covers a portion that is outside of the object’s boundary, a node is interior if it is
completely enclosed by the object. If the status of the node can not be decided, (e.g. a node
overlapping the boundary of the object), it is recursively decomposed until each one of its
children has a label assigned or a certain decomposition resolution level is reached. Angel
del Pobil et al. [8] employ two layers of spheres to generate an internal and an external cover
of the object to be represented.

Hierarchical Representations are resolution complete, thus, able to represent complex
objects with accuracy according to the storage that is available. They also facilitate col-
lision detection because the hierarchy preserves the cells in order in terms of their spatial
occupancy (characterized by the branches in the tree) and their size (characterized by their
depth in the tree). Moreover, they have become important and useful tools because of
their efficiency of representation and their improved execution times (e.g. when a search

of a spatial point is performed). Samet emphasizes that the savings during execution time

CHAPTER 1. INTRODUCTION 9

are a direct result of the data aggregation. He also affirms that hierarchical data struc-
tures provide a major advantage because they are both, easy to understand and easy to
implement [38].

In sensor-based planning the robot has no a priori knowledge of the environment. Use-
ful planners must rely on sensors that capture with accuracy the information from the
surrounding environment as the robot moves. Two decades ago Hans Moravec and Alberto
Elfes [35, 11] proposed the creation of maps to assist mobile robots to navigate in unknown
environments while avoiding obstacles. The methodology was called Occupancy Grid, a ma-
trix that represents 3D space, in which each element has a value. A positive value indicates
the presence of an object, 0 indicates that the space is free. Other extensions use the values
in the matrix to represent the level of confidence, (probability, certainty) that an object is
occupying that portion of space.

For a robot immersed in a changing environment there are memory, computational
capacity and time restrictions for planning [29], therefore, it is crucial to minimize the
amount of data that is sensed and processed while the robot is in motion, storing only
“salient” features of the environment. It is due to the memory limitations that an occupancy
grid is expensive to compute. Hierarchical representations of the environment require less
memory and may even be more efficiently obtained [41]. Because of these requirements,
we believe that the data structure that best models the environment for our purposes is an
octree. A brief description of octrees and their encoding is provided in the next subsection.

As we said before, because collision detection is a key component for path and motion
planning, under uncertain environments like in [27, 41], it is crucial to increase the speed of
collision tests. With these ideas in mind, reducing storage and increasing speed, we propose
our EODM as a novel approach for efficient collision detection. In the future, we plan to use
EODM as part of a practical framework that incorporates sensing for geometrical reasoning

with on line planners efficiently.

1.1.6 Quadtrees and Octrees

Quadtrees and Octrees are hierarchical data structures that have been widely employed
in diverse fields such as image processing, geographic information systems (GIS), pattern
recognition, solid modeling, computer vision and robotics [38].

The characteristic properties of quadtrees and octrees depend on three factors: the

kind of data that they represent, the criteria by which the decomposition is performed

CHAPTER 1. INTRODUCTION 6

and the decomposition resolution (number of times that the decomposition is performed
recursively) [38]. The decomposition may be regular (dividing into equal parts on each level
and producing regular polygons), or input dependent. The decomposition resolution may be
fixed beforehand or determined by the properties of the input data. Brabec and Samet [3]
provide an interesting set of Java applications of the different quadtree data structures
described in [38].

The most common quadtree representation is the region quadtree, treated here as quadtree.
Originally, they were employed to represent two dimensional binary images. A quadtree is
represented as a tree in which each intermediate node has four children (a tree of degree
4). The root node corresponds to the entire binary array. If the image does not consist
entirely of 1’s (or 0’s), it is subdivided into four quadrants of equal size. Each quadrant is
recursively tested with the previous criteria. Each node in the tree represents a quadrant of
the image that has been partitioned. The leaf nodes represent the portion of the image that
does not require further subdivision (e.g subquadrants that contain only either 1’s or 0s).
All the nodes in a quadtree are labeled with a “color”. The leaf nodes that represent blocks
comprised totally inside a region in the image (e.g. composed exclusively by 1’s) are “black”.
Those leaves that represent blocks located completely outside the region (composed only
by 0’s) are labeled as “white”. All the intermediate nodes (blocks containing a mixture of
0’s and 1’s) are “gray”. For a 2"x 2™ image, the root node is located at level n, while the
leaves are located at level zero. An example of a binary image array of 23 x 23 and its
quadtree representation is shown in Figure 1.1. The 1’s correspond to elements included in
the region, otherwise they lay outside. Note the advantage of the region quadtree storage

v.s. a binary array.

a) b) d)
0/ojojojofojo]o
oloj1]1]0|0]0]0
0/o|1|1]0|0]0]0
0/oj1/1]0|0]0]0
1/1)1]1]1)1]0]0
1l1)1]1]1)1]1]0
1/1)1]1]0f0|1]1 % %
1]1]1)1)0/0|1]1

Figure 1.1: Binary array image and its quadtree: a)region b)binary array c)quadtree d)tree

The three dimensional version of a quadtree is called an octree. Given a 2" x 2" x 2"

CHAPTER 1. INTRODUCTION 7

object, it will be recursively subdivided into octants. The lowest resolution elements of
the partition are cubes called vozels, which consist entirely of 0’s (inside of the object) or
entirely of 1’s (outside of the object). The octree is represented by a tree in which each node
has 8 children (degree 8). As in a quadtree, the root of the node of the octree represents the
entire three dimensional object. Leaf nodes represent cubes that do not require to be further
subdivided. The nodes are also color labeled with the same criteria as “white” for those
cubes outside the object, “black” for those ones inside the object, and “gray” otherwise.

Figure 1.2

Figure 1.2: Three dimensional object and the octree representation: a)3-D object ¢)Octree d)tree

From this point and onwards we use the term octree to refer to quadtrees and octrees.
Octrees save storage space by decomposing an image/object into homogeneous and disjoint
d-cubes, (where d is the dimension), centered at predetermined positions. Octrees are

employed primarily because the decomposition has the following properties:

e the partition pattern is repetitive, thus extensible to objects of every size
e the resolution of the partition can be refined in order to obtain finer patterns

e the resulting d-cubes possess the same orientation and can be mapped into each other

using translations

Quadtrees and octrees can be represented as a tree or as a code list. A tree represen-
tation generates overhead because the gray nodes and a pointer to each of their children
must be stored. Tree representations attempt to balance the computational cost of sequen-

tial and random access when a search is performed. Samet [38] demonstrates that the tree

CHAPTER 1. INTRODUCTION 8

representation of an octree with B black and W white blocks requires 4(B + W)/3 nodes
at most. The bound represents a considerable advantage compared to the binary array
representation that will increase the storage requirements exponentially as the dimension
of the environment increases. However, the worst case for an octree occurs when the ag-
gregation of the space to be represented is minimal, (e.g. a chessboard pattern). There
are other data structures that reduce the overhead inherent to octrees, like bintrees, k-d
trees, etc. For more information on these methodologies refer to [37, 38]. The amount of
an octree storage space depends on the resolution, (reflected in the number of levels of the
tree representation), and the perimeter in 2D or surface in 3D of the object that is being
represented [21, 22, 33, 38]. The experimental results of our research in Chapter 4 hold this
characteristic.

On the other hand, octree list representations are not so good when random access is
necessary in order to perform a search. However, they are useful because they reduce the
overhead of storing pointers between parent nodes and their children. Within this group,
some approaches consider the octree as a list of leaf nodes (e.g. Locational Codes (LC)),
and others describe it as a preorder traversal of the tree (e.g. DF-ezpressions) [37, 39].

The Locational Code (LC) is sequence of digits, whose values represent a path that
allows locating a leaf node starting from the octree’s root. Each node is labeled by a base
4 number in the case of quadtrees. Correspondingly, base 8 is used for octrees. Each digit
of the list indicates the branch of the tree to traverse. Figure 1.3 shows the quadtree block
representation and the path in the tree, (shown in bold), that is necessary to traverse in
order to find node N with LC: 23014. First, branch 2 at level one is followed starting at the
root of the tree (level zero). Then successively branch 3 at level two, branch 0 at level three,
and branch 1 at level four are chosen. A similar procedure is performed for octal chains.
To keep compatibility with the work of Jung [26] our implementation stores the Locational
Code of a node along with its level in the tree. However, the level of a node can also be
derived from the number of digits that compose its LC.

Locational Codes also encode the Cartesian coordinates of each node in an octree [26, 39].
For example, in LC: 23014 of node N, the digits in the chain will be examined from left to
right as shown in Figure 1.4. Each digit is transformed to its binary equivalent, producing
a subchain. The concatenation of subchains originates the following sequence:

0102 0115 0002 0012

In order to obtain the z-coordinate of node N, the first digit of each binary subchain

CHAPTER 1.

INTRODUCTION

LC: 2301,

22

|

20 21

a) Block representation

b) Tree traversal

is chosen and the new subchain b, is formed with a value of 0000. b, is then transformed
to its decimal equivalent resulting in 00002 = 019, thus, the zth coordinate of N is zero, (a
quadtree). The subchain for the y-coordinate, b, is obtained in a similar fashion, 1100, =
1219. And finally, the x-coordinate from subchain b, = 01013 = 519. The complete set of
coordinates (bx, by, bz) define a base point for each node in an octree, which corresponds
to the leftmost and bottommost vertex. The base point of N is (5, 12, 0). In order to get

the LC of a node starting from its coordinates the same process is performed but in reverse

Figure 1.3: Locational Code and the traversal of the tree

order. Notice also in Figure 1.4 that the space considered is non negative.

16
14

12

N A O ®

LC: 2301,

L.D’C_ibz
i

n
a?by

r
Y s bx

Location Code Cartesian

coordinates

o|lojo|o 2
1|1]0 0| = y
o|1]0 |1 X

Figure 1.4: Obtaining Cartesian Coordinates from a Location Code for a node N

Location Codes are employed in our work in order to (i) retrieve the closest black node
(or nodes in the case they all possess the same distance) to the center of our robot after the

collision detection test (ii) preserve the adjacency between the white nodes and a structure

that will be introduced in Chapter 2 called “separators”.

CHAPTER 1. INTRODUCTION 10

1.2 Related Work: Collision Detection with Spatial

Occupancy Representations

In order to speed-up collision detection some researchers have used discretized distance
maps (DM) [2, 14]. A DM is essentially a spatial occupancy map, however, each free cell,
rather than storing binary obstacle/free values, stores the distance to its closest obstacle
cell. Cells that overlap with an obstacle have zero value associated with them. These
distances are easily computed with a “wavefront” that expands outwards from the obstacles’
boundaries [2]. Figure 1.5 shows the DM corresponding to an environment and the L

distances associated with each cell.

. 1 0 0 1 1 0 o] 1

3 2 1 0 0 1 1 2

‘ 3 2 1 0 0 1 2| 3
3 2 1 0 0 1 2| 3

a) Environment b) Distance Map

Figure 1.5: An environment and it’s associated L; distance map

Barraquand et al. [2] used the DM to detect collisions with a given line segment (a link
of the planar robot) of length I by checking if the cell corresponding to an endpoint of the
line segment has a distance value > [. If it does, then there is no collision; otherwise the line
segment is recursively subdivided into two halves of length [/2, and the process is repeated.

Greenspan et al. [14] used a spherical representation to cover the robot as well as A.
del Pobil [7] and Quinlan [36], where each sphere is tested for collision in a systematic way.
Checking a sphere for collision is a constant time operation, a simple comparison of the
radius of the sphere with the distance value stored in the cell in which the sphere center lies.
Figure 1.6 shows a 2D DM of an environment in which a diamond-shaped, (Manhattan),
robot lies. The cells have been filled with a wavefront expansion that also uses Manhattan
distance. Assume the radius of our robot is of 3 units, which is greater than the value of

the cell in which the center of the robot falls, therefore the robot is in collision.

CHAPTER 1. INTRODUCTION 11

1 1 1 (0] 0 1 1 1
0 0 0 (0] 0 1 1 2
0 0 0 (0] 1 (0] 0 1
1 0 0 1 1 (0] 0 1
2 }/\ 1 1 1 (0] 0 1
3 2‘ }.\ (0] 0 1 1 2

2_'-- 1 9] 0 1 2 3
3 1 (0] 0 1 2 3

Figure 1.6: Collision detection for a 2-D distance map

DMs, however, have a significant disadvantage. The memory requirements are O(n?),
where d is the dimension of the workspace and 7 is the number of cells along one dimension.
In 3D, for instance, a workspace of 2m, with a 1mm resolution would require 8 gigabytes
of memory. Larger workspaces and/or finer resolution, would increase the memory require-
ments significantly. Octrees, as discussed before, are a better and more memory efficient
spatial occupancy representation [37]. The memory requirements for an octree are pro-

“yolume”, hence it would take O(n?) to

portional to the “surface area” rather than the
represent a 3D environment. It is, however, a “binary” representation, i.e., a node is either
free or represents an obstacle, or mixed if neither.

Related work that employs octrees for collision detection can be found in [1, 16], where
the environment is modeled as an octree and collision testing consists in checking if a point
is contained inside an obstacle node of the octree. Hayward [16] originally represents the
links of a manipulator as a set of hemispheres and cylinders. Then an octree is created
for each link. The obstacles of the environment are grown employing the radii of each
robot component, and thus, “reducing” the robot to line segments. Collision detection is
a recursive process that partitions each line segment into two and tests each subsegment
for interference with the corresponding octree. The process is memory intensive. The main
disadvantages of this approach are that it is necessary to store and keep track of several
octrees at a time and that the octrees must be recomputed for each new configuration of the
robot. Additionally, the search for collisions is an intensive process, specially if we consider
a dense domain because at each configuration the algorithm tests an octree against another.

Another methodology proposed by the same researcher utilizes a single octree and control

points distributed over the surface of the robot. Each control point is tested against the

CHAPTER 1. INTRODUCTION 12

octree representation. If any control point lies inside an obstacle node, a collision has
been found. Despite the “simplicity” of this approach, it is important to consider both
the location and the number of control points that have to be placed in order to ensure
an efficient collision detection scheme, facts that compromise the robustness of the model.
Moreover, contact situations between the robot and an object may be difficult to detect, for
example when the object is completely included inside the robot’s boundary representation.
The main problem with these octree approaches is their lack of distance information,
how “far” are the obstacle nodes with respect to the free nodes. To remedy this absence
of knowledge, Hierachical Distance Transforms have been proposed [38, 40]. They have
been used in image processing to provide a certain sense of proximity to obstacles, however,
the aim is achieving efficient image representation. The distance transform is the shortest
distance from the center of an obstacle node to the boundary of a free node. For each obstacle
node in a quadtree, its eight-neighbors are tested in order to determine the L;,¢ distance
to the closest free (white) pixel to that particular obstacle node. This approach invariably
stores a single distance value for the entire quadtree node, which has been proven effective
for image representation but insufficient for collision detection [25]. The work of Schneier [40]
proposes a manhattan (L;) distance transform that stores the minimum distance to a white
pixel in each one of the directions (north, east, south, west) around the obstacle node.
Jung [25] proposes a new representation of the environment called Octree Distance Map
(ODM). The main difference between the work of Schneier and Jung is that the ODM
computes distances for white (free) nodes, not obstacle nodes, and that it constitutes the
first step towards capturing this distance information in a hierarchical manner. ODM adapts
and augments the conventional octree by storing a minimum and a maximum distance
values (2 bytes) for each white node of the octree. These values are called Nodal Separation
Index (NSI). The minimum NSI represents the minimum distance between any point in the
white node to the obstacles. This implies, that a spherical robot of radius less than the
minimum NSI is guaranteed to be collision free if its center is located in that white node.
The maximum_NSI represents the lower bound of the robot’s radius such that no matter
where the robot is located in the white node, it is certain to be in collision with an obstacle.
The ODM collision detection algorithm uses the minimum and maximum NSI’s of the white
node to limit the search (as compared to an octree) for obstacle nodes that can result in
collision. ODM therefore, trades memory for speed of collision detection when compared to

an octree. Moreover, ODM stored minimal distance information, just two values.

CHAPTER 1. INTRODUCTION 13

1.3 EODM: Basic Idea

This thesis started with a simple basic question: “what distance information can be stored
in an octree to further improve collision detection efficiency without seriously affecting
storage?”. Our work shows that the information we need is a distance function defined over
the boundary of the white nodes that represents the closest obstacle distance to each point on
the boundary. Formally speaking, this distance function is obtained from the intersection of
the Voronoi diagram of the free space with the boundaries of the white nodes. We show that
with this information, collision detection (for a spherical robot) is a constant time operation
for L metric, essentially a look up in the stored distance.! As a result, EODM significantly
decreases the collision detection time when compared to other octree based approaches,
however, it is a bit more memory intensive than an octree, but still considerably less than
a bitmap representation. On average, the storage depends only on the area of the white
nodes and not on the volume, although the worst case scenario will still be proportional to
the volume.

The main philosophy behind our research is to find intermediate approaches between a
Distance Map (with small run-time for collision detection but high requirements of memory)
and a conventional octree (with relatively long run-time but low memory requirements).
This memory versus collision detection time trade-off for DM, EODM, ODM and octree,
is qualitatively shown in Figure 1.7. From our point of view, EODM constitutes an option

that offers a promising memory-runtime compromise.

O octree

oomQO ‘ EODM

O pistance Map

zCx

mz — -

STORAGE SPACE

Figure 1.7: Memory-Runtime trade-offs. We expect EODM to lie somewhere in the shaded region

! Given the location of the center point of a spherical robot, it takes O(logN), N = number of leaf nodes,
to locate the node in which the robot center lies, for any hierarchical representation be it octree, ODM or
EODM. Once the node is located, the time taken to detect collision is constant for EODM. This is where
the time saving comes compared to octree or ODM.

CHAPTER 1. INTRODUCTION 14

We must cite here the work of Hoff et al. [19], developed simultaneously as our research
progressed. They presented a hardware implementation to compute discrete generalized
Voronoi diagrams and used it successfully for fast dynamic path planning. They generate
a coarse polygonal mesh that approximates the obstacles as a preprocessing step. The
3D Voronoi diagram of the obstacles is discretized into a set of planar Voronoi diagram
computations. Each discrete “slice” of the Voronoi diagram is generated for a set of arbitrary
obstacle points (sites). The distance to the closest site is stored in a hardware version of
a Z-buffer. The performance of the system is bounded by the speed with which the buffer
rasterizes the pixels of the scene. [18] Their work, as well as ours, reinforces strongly the
advantage and the need of modeling efficiently the notion of distance using Voronoi diagrams.

The thesis is organized as follows. Chapter one provides a brief introduction to obstacle
representation and the background work that supports our research. Chapter two describes
our collision detection approach for a 2D case, meanwhile Chapter 3 provides a deep descrip-
tion of the extension to the 3D problem. Chapter four provides the experimental results
obtained, in terms of performance and memory employed. It also explores the relevance of
our approach compared with other classical ones, like a Distance Map, and an octree. We
conclude in Chapter five with a discussion of future possibilities for our approach. Some
relevant algorithms that we have designed and implemented and the user’s manual of our

implementation can be found in the Appendices sections.

1.4 Contributions of the Thesis

The contributions of our research are:

e A new octree-based representation for collision detection called Extended Octree Dis-
tance Map (EODM) that trades off memory for faster collision avoidance than that
with an octree.

e Constant time collision detection is acurate up to the resolution of the underlying
octree. This assumes that the white node in which the center of the robot falls has
been already found.

e Mathematical models and algorithms for constructing an EODM.

e Mathematical proofs and collision detection algorithms with EODM.

e Empirical results showing that EODM speeds up collision detection dramatically when

compared to other octree-based methodologies.

Chapter 2

Extended Octree Distance Map
(EODM): 2D Case

In this Chapter, we present the 2-dimensional version of our Extended Octree Distance
Map (EODM). The generalization to the 3D problem is relatively straightforward, though
somewhat tedious in detail (as discussed later in Chapter 3). For brevity, we will use the

term octrees to refer to both quadtrees and octrees.

2.1 Assumptions and Notation

We assume a static known environment and that an octree model of the environment is
given. A white node of an octree, denotes that the entire node is in free space, and a black
node denotes that the entire node is part of an obstacle(s), and of course, a grey node
denotes that part of it is free and part lies in an obstacle. A white node of the octree
is denoted by W. The metric considered is L; (Manhattan metric) and we use d(A4, B) to
denote the L; distance between two points A and B.

Let R denote a manhattan spherical robot (diamond shape) with radius r. The robot
is located at a point L, if its center is positioned on L. A collision query consists of the
following question: given a spherical robot R with radius r, and location L, determine if it
is in collision with the obstacles in the environment. Note that the robot location as well

as the robot’s radius may vary from one query to another.

15

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 16

2.1.1 Distance

For the purposes of our research, the present work considers Manhattan distance (L) to
measure the proximity between a white node in an octree to its closest obstacles. Manhattan
distance is defined as:

Ly(ab) = X8 |(ai —)|

where d is the dimension of the space.

2.1.2 Motivation

Since the robot location L can vary within a white node, quite possibly a reasonably large
region, the vital purpose of our research is to determine “what distance information can be
stored to aid in collision detection?”. The key idea behind EODM is to store the distance
around the “boundary” of a white node W to its closest obstacles. A schematic is shown in
Figure 2.1. The left side shows a white node surrounded by obstacles (black regions). The
horizontal axis in the graph on the right is the length traversed (denoted by parameter s)
along the boundary of the white cell starting from vertex 0. The vertical axis represents
the distance of the corresponding boundary point to the closest obstacle. This distance
function along the “surface” (perimeter in 2D) d,(s) encodes all we need to know about the
proximity of obstacles. This will require additional storage, however, it is still proportional

to the “surface” and not the “volume” of the free region.

Distance
tothe —
— closest _|

obstacle

S

o
(I B

.

o
=
N}
w
~

Boundary cell’s length

Figure 2.1: The perimeter distance function, d,(s)

We show below that for the L metric, d,(s) is sufficient to carry out the collision query
in constant time, once the white node in which the robot center lies has been found; it takes

O(logN) to locate the node for any hierarchical representation be it a simple octree, ODM

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 17

or EODM.

2.1.3 Constant time collision detection with d,(s)

Consider Figure 2.2.a. Let L be the center of R (diamond shape) lying in a white node W.
Let S be one of the boundary edges of W. Let P be the projection of L onto S. Let A be
a closest obstacle point (say, from obstacle Q) to S on the left side of S. This implies that
no other obstacle point exists strictly within the L, sphere (striped diamond shaped region
shown in Figure 2.2b) centered at L and radius d(L, A) = z +y + [, with z and y as shown
in Figure 2.2.

a) s W_|b .8

Q

Figure 2.2: d,(s): the shortest distance between any point in W and an obstacle point

Let the distance between P and L, d(P, L), be l. The shortest L; distance between L and
A is given by the expression [+ z +y. Note that there may be many different paths with the
same shortest distance; in fact, all monotonic (in both horizontal and vertical coordinates)
paths from A to L are shortest paths by the very property of L1 metric. However, we are
not interested in all the possibilities, only in the path between L and A that passes through
point P as depicted in Figure 2.2.a.

Theorem 1, below, formally shows that a closest obstacle point (on the left side of S) to
the robot’s location L is also a closest obstacle point to the projection of P onto S. Since
P belongs to S, we can easily compute the length parameter along the perimeter of S (say,
it is sp) and get the closest obstacle distance to P simply by evaluating (or indexing into)
dy(s) at s = sp. The closest obstacle distance to L, denoted by dp(L) is then simply the
sum of the two, the distance from L to the projection point P plus the distance value stored

at P, i.e.,
do(L) = d(L, P) + dy(sp) (2.1)

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 18

If the robot’s radius 7> dp(L), the robot is in collision, otherwise it is not. Clearly this

simple test is performed in constant time.

Theorem 1 Let point P be the projection of point L onto S. If A is a closest obstacle
point to P, then it is also a closest obstacle point to L.

Proof

Our proof is by contradiction. See Figure 2.3 for an illustration. Assume that exists
another point A" (from the same or another obstacle O') strictly closer (than A) to L, such

that d(L,A’) = z' 4+ y 41 (a monotonic path, hence the shortest). This means that:

= dist(A',L) < dist(A,L) =z +y+1

But, we know that dist(A',L)=2z'+y +1
> +y+i<z+y+l
sty <z+y

= A’ is closer to P than A which is a contradiction. ¢

Figure 2.3: Proof of Theorem 1

Note that, had we chosen to work with Lo distance, Theorem 1 would not hold. See
for example Figure 2.4. The shortest Lo paths from the obstacles to the robot are shown
in dashed lines. The shortest path between point L and the closest obstacle point does not
necessarily pass through the projection P of L onto S. In this case, in order to obtain the

closest obstacle it would be necessary to compute the distance from L to all the obstacle

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 19

points that are closest points along the boundary of the node that contains the robot (pa-
rameterized by s), and select the one with the minimum value, (as shown in Equation 2.2).

Thus, collision detection would not be a constant time operation.

do(L) = min{d(L, 5) + dp(s)} (2.2)
S

. ---- Lyshortest paths

Figure 2.4: Disadvantages applying Lo metric

2.2 2D Collision Detection

In this section we present and describe our collision algorithm for a 2D EODM called
Detect_2D_Collision(). The corresponding pseudo-code is presented below. The proce-
dure accepts as input the 2D EODM and the robot information (center and radius). The
result is the COLLISION/FREE Status of the robot. In case a collision is found, the
Closest_obstacle and its manhattan distance (Min_dist) to the robot are also returned
as part of the output. Min dist is initialized with an arbitrary large value.

Based on our previous discussion, collision detection with an EODM is a rather simple
process once the node (black or white), in which the center of the robot, L, is located has
been found. The search process is performed by procedure find node () and takes O(logN),
where N is the number of leaf nodes in the octree. If this node is black, the algorithm
immediately returns a COLLISION (lines 2-5 pseudo-code, shown below). Otherwise, let
the node be identified as W, shown in Figure 2.5.

For each boundary edge E; of W, we obtain the projection point P of L onto E; us-
ing procedure project robot() and then, we test P for collision using the subroutine

Detect Collision_in edge(), (lines 6-8). If a COLLISION is found while the projection

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE

20

onto a particular edge E; is being examined, the Status of the operation is returned (lines
9-10). Otherwise, the robot is FREE of collision.

Obstacle
to P

Closest E A w

dist_to_obst=x +y y

Figure 2.5: Collision Detection for a 2D EODM

Detect_2D_Collision(EODM, robot, Min_ dist, Closest_obstacle)
Input : EODM, Robot
Output: COLLISION/FREE status, Closest_obst, Min_dist

W = find_node(
if (COLOR(W)

Min_dist

g W N =

For each E; of
P
Status =
if (Status)

EODM, robot->center);
== BLACK)

Closest_obstacle = W

=0

return COLLISION

w
project_robot(robot, FE;)

Detect_Collision_in edge(F;, robot, P, Min dist, Closest_obst)

10. return COLLISION

11. return FREE

In order to describe how a collision is tested for each edge of a white node, let edge dir

be the direction in which L is currently projected, (north, east, south, west). In Figure 2.5,

we show Py.st, which is the projection of L onto the west edge of a white node W. Let

do(Ledge_dir) represent the distance between the robot and the closest obstacle to an edge

E; of W in direction edge_dir. do(Ledge_dir) is given by (see also Equation 2.1):

do (Ledge_dir) = d(L, P edge—dir) + dP(SPedye_di'r)

(2.3)

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 21

Then, we have that the shortest distance between the robot center L and the closest 2D
obstacle, dp(L), is:

dO (L) = min. {dO(Ledge_dir)} (2.4)
edge_dir

where edge_dir = { north | east | south | west }

The algorithm in charge of testing a collision for a particular edge of a white node
is called Detect_Collision_in_edge(), and its pseudo-code is presented below. The first
term of Equation 2.3 is represented by dist_to_edge, the manhattan distance from the robot
center to the projection P.gge 4ir- The second term is represented by dist_to_obst (see
Figure 2.5). Our current implementation has a small variation (lines 2-3 pseudo-code shown
below). Rather than storing actual distances along the edges of a white node, we store the
interval I over which an obstacle point is the closest to the edge and a pointer to that obsta-
cle point. We call this function o,(s). The actual distance function d,(s) is easily computed
from o,(s) at collision detection time using procedure compute_distance_to_obstacle().
Adding both values, dist_to_edge and dist_to_obst, we obtain do(Ledge_dir), Which is
represented by dist to_clst obstacle in line 4 of the pseudo-code. Line 5 performs the
collision test in itself by comparing the radius of the robot and do(Ledge_dir) in order to
refurn the COLLISION/FREE status.

Detect_Collision_in edge(Edge, robot, P, Min dist, Closest_obst)
Input : Edge, robot, P
Output: COLLISION/FREE status, Closest_obst, Min_dist

1. dist_to_edge = manhattan(P, robot->center)

2. I = find_2D_interval (Edge, P)

3. dist_to_obst = compute_distance_to_obstacle(I, P)
4. dist_to_clst_obstacle = dist_to_edge + dist_to_obst

5. if (robot->radius >= dist_to_clst_obstacle)

6. if (dist_to_clst_obstacle < Min_dist)

7. Min dist = dist_to_clst_obstacle

8. Closest_obst = I->obs

9. return COLLISION

10. else return FREE

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 22

To recapitulate, EODM stores dp(s), which is the perimeter function defined around
the boundary edges of a white node. It represents the distance of each boundary point of
the white node to the obstacle closest to that point. For this reason our EODM is more
memory intensive than a conventional octree, however, it significantly decreases collision
detection time given its simplicity (a simple comparison performed) for each collision test.
So far, we have assumed that the dp(s) of each white node in the octree has been computed

beforehand. The following sections present the construction of a 2D EODM in detail.

2.3 2D EODM Creation

In this section, we now describe how the EODM is created from an octree. Each time a
grey node is split, we store the dividing lines (called separators from now on). First, the
separators are constructed and stored in a separate data structure, Separators tree. A
sweep-line type algorithm is then applied to divide each separator into a set of intervals such
that for each interval, the closest obstacle point remains the same. This process is repeated
for every separator in the octree. For each white node, we determine the portions of the
four separators that form its boundary and link the intervals to the white node boundaries.

At the end of this step, each white node in the octree has an o,(s) associated with it.

2.3.1 Computing the intervals along the separators

We illustrate the intervals computation with an example, graphically shown in Figure 2.6.
In this case, separator S overlaps with the east edge of W. The free space inside W and
the obstacles are located on opposite sides of S. We are interested in partitioning S into
intervals such that the closest obstacle point remains the same along this interval. Formally
speaking, this corresponds to computing the intersection of the Voronoi diagram of the free
space with the separator S. Clearly this would be a set of intervals. Our approach directly
computes this intersection without having to explicitly compute the Voronoi diagram, using
instead a sweep-line algorithm. In order to compute the distance intervals we consider only
those obstacles lying in the outward normal direction from the boundaries of the white
node. Because of the simple shape of the octree nodes (squares with axes parallel to the

coordinate axes), there are great simplifications!. It suffices to consider only those endpoints

!Our approach can easily be generalized to the case where the obstacles are convex polygons.

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 23

of the edges (or portions thereof) that are x-visible from S?. This process is carried out by
the function obtain_black nodes(). In our example in Figure 2.6, one of the endpoints
of obstacle O 4 is therefore eliminated. The routine for extracting the endpoints from the

visible obstacle edges is called obtain black endpoints().

Figure 2.6: The closest obstacle function op(s): vertex b, is closest to S in the interval (0,4), vertex
by is closest in the interval (4,8), vertex cz is the closest in the interval (8,10) and vertex ¢; is closest
in the interval (10,12)

The obstacles’ endpoints are sorted by their L; distance to the origin of the coordinate
frame associated with the separator. Let Black Endpoints be the sorted list of endpoints.
Figure 2.7.a shows the Black_Endpoints corresponding to the obstacles in Figure 2.6. Next,
we use a sweep-line with 135° orientation®. Each time the sweep-line hits a vertex, we
compute the intersection of the sweep-line with the separator S. We keep track of two
consecutive hits and the corresponding intersection points. Let current_point denote the
top element in Black Endpoints. In our example it is be, belonging to obstacle Op. Since
this is the first point, an interval is opened, starting at the origin of the separator with
a pointer to by. Let next_point be the next element in the list. In our example it is
as, belonging to obstacle O4. Let the intersection point related to current_point be
current_ip, and that corresponding to next_point be next_ip.

Somewhere between current_ip and next_ip, along the separator, the closest obstacle
to S may (or may not) switch from Op to O4. The exact point on the separator where

the switch occurs, if it occurs, can be easily determined by computing the intersection of

S with the L; Voronoi edge between current point and next_point. The Voronoi edge is

2A horizontal line segment joining the obstacle edge point and S does not hit another black node.
3The orientation of the line depends on the quadrant in the plane to which the white node belongs.

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 24

obtained by comparing the coordinates between the current_point and next_point. Two
cases can arise. If the difference of the endpoints coordinates in x (dx) is greater than their
difference in y (dy), the shape of the Voronoi edge is that of Figure 2.7.b. Otherwise the
shape of the edge is shown in Figure 2.7.c. When dx = dy we use by default the edge in
Figure 2.7.b for a vertical sweep (S is vertical) and the edge in Figure 2.7.c for a horizontal

sweep (S is horizontal), although both cases can be applied.

S ;
12 xcl Black_Endpoints
Points | Distance
1 |
b2 4
10 —— a2 5
9 | bl 8
8 —— xc2 c2 1
. cl 15
6 —— blx
next_ip 5 N
current_ip 4 X
3 41—
2 7 b2
1 4 a2
AN Ly
T T T L T T T T T T
12 3 4\§\6\ 7 8 9 10 11
a) dx <dy

Figure 2.7: Computing the intervals

If the Voronoi edge intersects a vertical separator S (as in Figure 2.7.c), it implies that
at the intersection point, the closest obstacle point switches from by to a9. In this case, we
close the interval (at the intersection point) for obstacle Op and open a new one (at the
same point) that is associated with as (obstacle O 4). If the Voronoi edge does not intersect
the separator S, it implies that by is closer than as to all points in S, hence we discard point
az, keep the interval for by (Op) open, keep bs as the current point, and get the next point
from the list as the next_point. In this example, the Voronoi edge is that of Figure 2.7.b,
hence asy is discarded and the current top point from the list, b1, becomes next_point. The
process continues until all the points have been visited. We call this function sweep_line ().

Algorithm sweep_1ine () is shown next. Lines 2 and 3 initialize the state of S by opening
the first interval. sweep_dir indicates the direction in which the sweep is performed (north,
south, east, west) and is used to find the origin point of S. The rest of the algorithm
performs the sweep-line competition by comparing the current_point and next_point
until the list of Black_Endpoints is empty. The Voronoi edge between this two points is

computed by procedure compute_V_edge for_two_points(), (line 6), which is described in

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 25

more detail in section 2.3.2. Point VP represents the intersection point between the line
separator S and the Voronoi edge of current_point and next_point. If VP exists, the

intervals of S are modified accordingly by procedure update_interval().

sweep_line(S, Black Endpoints, sweep.dir)

Input: S, Black_Endpoints, sweep._dir

Output: S containing the distance intervals

point origin /* point that opens the first interval */
point current_point, next_point

point VP /* intersection point between line separator and Voronoi edge */

1. current_point = Black Endpoints

/* opening first interval */
choose_origin(sweep_dir, S, origin)
open_interval (S->Interv, origin)

while (not_empty(Black _Endpoints))

O wN

next_point = Black_Endpoints->next
/* possible change in the interval: compute Voronoi edge */
compute_V_edge_for_two_points(S, current_point, next_point,sweep_dir, VP)
if (VP has been found)

update_interval(S->Interv, VP)

© 00 N O

current_point = next_point

2.3.2 Computing the Voronoi Edge between two endpoints

Determining when to open or close a new interval for a line separator is an important
aspect of our sweep_line() algorithm. The exact point in which a new interval is created
is determined by the intersection of the Voronoi edge between two endpoints and the line
separator S. We mentioned before that we do not compute the Voronoi edge explicitly,
however, there are some factors that we take into account. Assume that the two endpoints
currently examined by the sweep-line are a and b. The points may belong to the same
obstacle. The possible configurations of the endpoints while the line sweeps are shown in
Figure 2.8. The dashed lines are used only to show the relationship between dx and dy.
The procedure that classifies each kind of case according to the endpoints position is called
determine point_interaction().

The subroutine that computes the intersection point (pint) between the Voronoi edge of

two endpoints and S is called compute_V_edge_for_two_points(). It is invoked internally by

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 26

dx <dy dy =0
e xb 0 SRR : e
: : a X--ommemeeemeeeeeee xb
@ koo oK @
b oo X a
a) b)
dx >dy dx =0
b a
a b X X
Tt X b i '
| | | | x,
777777777777777777777777 ' a
b X Xa i
b3 X
e) f) a b
9) h) i)

Figure 2.8: Configuration of the endpoints during the Voronoi edge computation

the sweep line (). The pseudo-code is presented below. The input consists of the separator

line, the two endpoints and the direction of the sweep (sweep_dir).

compute_V_edge_for_two_points(S, a, b, sweep.dir, pint)
Input : S,points a and b, sweep_dir

Qutput: pint

dx = abs(a.x - b.x)
dy = abs(a.y - b.y)
case = determine point_interaction(a, b)

pint = compute_intersection(S, a, b, case, sweep.dir, dx, dy)

g bW NN -

return pint

Procedure compute_intersection() computes pint. It distinguishes four cases, either
dx or dy is equal to 0, dx<dy and dx>dy. That sole relationship is enough to define the

shape of the Voronoi edge. We examine each case next:

e If dr = 0, the Voronoi edge for cases in Figure 2.8.g and Figure 2.8.h is horizontal and
passes exactly through the middle point of the dashed line that joins the endpoints,(see
Figure 2.9). When the sweep is performed for a separator S in the horizontal direction
there is no intersection between the Voronoi edge and S. Therefore, pint in the above
pseudo-code is NULL. For the case in Figure 2.8.g, point a is the closest to S (see
Figure 2.9.a). In Figure 2.8.h, point b is the closest to the horizontal separator (see
Figure 2.9.b).

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 27

When the sweep is vertical, pint exists and the intervals are modified accordingly.
For Figure 2.8.g we close the current interval and associate it with endpoint a as the
closest one, and open a new interval associated with point b (see Figure 2.9.a). The

opposite happens for Figure 2.8.h.

a) b)

o
o
o X -4

Figure 2.9: Voronoi edge when dz =0

e When dy = 0, (Figures 2.8.c and 2.8.d), the Voronoi edge, illustrated in Figure 2.10, is
a vertical line that cuts through the midpoint of the dashed line between the endpoints.
If the sweep is performed in the vertical direction, there is no intersection with S,
(pint is NULL). However, point a in Figure 2.8.c is kept as the closest to S, (see
Figure 2.10.a). Point b in Figure 2.8.d is kept as the closest one in Figure 2.10.b. For
a horizontal sweep, pint is computed and the intervals are modified, e.g. we close the
current interval which is associated with point b in Figure 2.8.d and open a new one

for endpoint a (see Figure 2.10.b).

a) b)

i i

- Voronoi Edge

Figure 2.10: Voronoi edge when dy =0

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 28

If a horizontal sweep is performed for Figure 2.8.i, we proceed as when dy = 0,

otherwise, we find the intersection as when dz = 0.

e For dz < dy, examples are shown in Figure 2.8.a and Figure 2.8.b. Their Voronoi dia-
grams are shown in Figure 2.11.a and Figure 2.11.b respectively. We use Figure 2.11.a
to describe the computation of the Voronoi edge. We apply a “squaring” process that

evens the difference of length between dx and dy (see dashed squares in Figure 2.11).

a) dx b) dx
b a
X X
————————————————————
r 3 !
| il av |
[. '
aX X b
a
)(h| X
P R ; 7}....
I
| i
! ;
,,,,,,,, Memimimm SR
aX X b
----- Voronoi edge === Voronoi edge

Figure 2.11: Voronoi edge for dz < dy

Let VP be a point from the Voronoi edge between points a and b. VP is located at
the upper left corner of the dashed square in Figure 2.12.a. Let the vertical distance
between a and VP be y. We know that the manhattan distance from b to VP is
dz + (dy — y). If VP indeed belongs to the Voronoi edge, its manhattan distance to

both competing endpoints a and b is the same, therefore

y =dz+ (dy—y)
2y =dzx+dy

AL (2.5)

Equation 2.5 provides the exact y-coordinate of VP when added to that of point a.
Notice also that, as we mentioned before, the position of the voronoi point only depends

on the relationship between dx and dy.

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 29

We choose now the lower right corner of the square as VP (Figure 2.12.b). The 2D
manhattan distance from point a to it is dz + y, while the distance from b to VP is
dy —y. Again, we equal both distances and obtain as a result Equation 2.6, which

provides the y-coordinate of VP once added to the y-coordinate of point a.

de+y=dy—vy
2y =dy —dx
(dy — dx)

y="—">5 (2.6)

The complete Voronoi edge is shown in Figure 2.12.c. The portions of the edge that
extend from the corners of the square, (where the VP was computed) are the ones that
may (or not) intersect a separator S. For a vertical separator, pint is obtained by
projecting VP onto S as in Figure 2.12.c. For a horizontal separator pint is NULL and

point a is kept as the closest point to S.

y| i Y dy

----- Voronoi edge

Figure 2.12: Computing step by step the Voronoi edge when dz < dy

o If dx > dy, Figures 2.8.e and Figures 2.8.f belong to this category. They have to be
submitted to a squaring process, similar to the one described for the previous group.
The Voronoi edges for this subcases are shown in Figure 2.13.a and Figure 2.13.b

respectively.

In order to explain the Voronoi edge computation, we use the case in Figure 2.8.e.
Let the upper right corner of the dashed square in Figure 2.14.a be VP Let = be the

horizontal distance between point b and VP.

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 30

a) b)

dy

----= Voronoi edge --—- Voronoi edge

Figure 2.13: Voronoi edge for dz > dy

If VP is part of the Voronoi edge, its manhattan distance to each endpoint, a and b
must be the same. Equation 2.7 provides the x-coordinate of VP when added to the

x-coordinate of b.

d(a,VP) = d(b,VP)
(dz—z)+dy ==

de+dy =2z
T = (dz + dy) —2|_ dy) (2.7)

Now, let the lower left corner of the square (Figure 2.14.b) be VP. Equaling its man-
hattan distance to the endpoints we obtain Equation 2.8, shown below. The equation

provides the x-coordinate of VP when added to that of b.

d(a,VP) = d(b,VP)
(de —z) =dy+=
de —dy =2z

7= M (2.8)

The complete Voronoi edge is shown in Figure 2.14.c. For a vertical sweep, pint is
NULL, however, it is not the case for a horizontal sweep. The other cases falling in

this category are solved likewise, exploiting their geometrical similarities.

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE

Figure 2.14: Computing step by step the Voronoi edge when dz > dy

a)

b)

dy

dy

c)

----- Voronoi edge

2.3.3 Algorithm Build_2D_EQODM

31

The algorithm that constructs the EODM is called Build_2D_EODM() and it is given below.

Routine Create_separators() generates the data structure Separators_tree. Separators

are created only once and they are linked to their adjacent white nodes. Correspondingly,

each white node points to its adjacent line separators. Next, for each white node in the

octree, the closest obstacle function o,(s) is computed around the boundary edges. Rou-

tine Fill_closest_obs_EODM() performs this process.

Whenever it finds a separator S,

it calls Obtain distance values _for_S() and Copy_intervals to_white nodes() to pass

the distance information to all the white nodes adjacent to S.

Build_2D_EODM(Octree, EODM)

Input : Octree
OQutput : EODM

Separator Separators_tree

1.Create_separators(Octree, Separators_tree)

2.Fill_closest_obs_EODM(Octree->root, Separators_tree, EODM)

Fill_closest_obs_EODM(Octree_node, Separators_tree, EODM)

Input: Octree_node, Separators_tree
OQutput: EODM

Separator S

1. For each S € Separators_tree

For

2
3.
4

(sweep_dir =

Obtain_distance_values_for_S(S, Octree_node, sweep_dir)

Copy_intervals_to_white nodes(S, Octree_node, EODM)

north to sweep._dir = we

st)

CHAPTER 2. EXTENDED OCTREE DISTANCE MAP (EODM): 2D CASE 32

The function Obtain distance_values_for_S() uses obtain_black nodes() and pro-
cedure obtain_endpoints () to generate the list of vertices that belong to the visible* black

nodes from S. Procedure sweep_line () is then called to compute o,(s).

Obtain distance_values_for_S(S, Octree node, sweep. dir)

Input: Octree node, S

Output: A line separator S containing the distance intervals

1. obtain black nodes(Octree_node, S, sweep_dir, Black Nodes_ List)
2. obtain_endpoints(Black_Nodes List, sweep_dir, Black_Endpoints)
3. sweep_line(Sep_node, Black_Endpoints, sweep_dir)

“x-visible or y-visible depending on the direction in which the sweep is be performed

Chapter 3

Extended Octree Distance Map
(EODM): 3D Case

In the previous chapter we introduced the Extended Octree Distance Map (EODM) and
proposed it as an efficient collision detection scheme for static 2D environments. EODM
captures the distance from a free portion of space to its closest obstacles, modeling the
distance as a continuous function along such portion’s border: d,(s). This section describes
the extension to the three dimensional case.

To describe the building process of our approach we will consider a white node W and
one of its faces F; as an example. Let R denote a 3D Manhattan robot, a tetrahedron of
radius 7. The locus of R is determined by its center, situated at point L. Let O denote the
set of obstacles of the environment. Furthermore, let O; denote a single obstacle, where the
subscript ¢ indicates the obstacle number. The objective of our approach is to determine if
R, when positioned at L, is in collision with any of the obstacles O; € O. Both, L and r
can vary from query to query.

In a quadtree, EODM keeps the distance values to the obstacles of the environment
along the boundary edges of a white node W creating the distance function dy(s). For the
3D EODM the equivalent d,(s1,$2), a two-dimensional function (surface), is defined over
the boundary faces of W. If we could measure the distance to the corresponding closest
obstacle for each one of the surface points lying on the faces of W, (see Figure 3.1 below),
and plot the values of dp(s1, s2), the result would be a “bubble” that encloses W.

Let the infinite plane in which a given face F; of a white octree node is embedded be F;.

33

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 34

a)

O,

Figure 3.1: a)Closest obstacles to the top face of W b)d,(s1, s2) for the top face of W

We show that indeed, it is not necessary to store the distances for all the surface points of
each face F;, but only intervals along certain lines (separators) produced by the projection
of the 3D obstacles over each F;. An interval groups the portion of a line separator for
which an obstacle projection, thus its corresponding 3D obstacle, is the closest.

In order to compute the distance intervals we consider the intersection of the Voronoi
Diagram of the 3D obstacles with the F; that holds the obstacle projections. Such intersec-
tion generates planar Voronoi regions in F;. We do not explicitly compute a Voronoi region,
but the intersections between its edges and the line separators using a modified sweep-line
process. The sweep and the Voronoi edge computations are described in subsections 3.3.2
and 3.3.3 respectively.

It is important to remark that the way in which we proceed and the advantages that
our approach possesses, are due to the cuboidal geometry of the 3D obstacles. Once pro-
jected, the projections are rectangular. This allows us to deal with projections that are
parallel to the coordinate axis defined over each projection face. Had the obstacles another
shape or were rotated, this feature does not hold and hence our scheme will need to be
extended/modified.

The 3D EODM benefits from the qualities of a fast collision test by scaling down the
problem one dimension at each phase, first from 3D to a plane by the projection of the
obstacles, and then by capturing the proximity information using the line separators. This
is not only reflected during collision detection time but also in the way 3D EODM is built.
It is true that 3D EODM carries a considerable overhead, however, the simplicity plus the

speed of the test demonstrate its advantages.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 35

3.1 Fundamentals

The faces of an octree white node have a direction associated: NORTH, EAST, SOUTH,
WEST, FRONT and BACK (shown in Figure 3.2).

Figure 3.2: Octree white node and adjacent infinite planes

Let 11 be the outward normal to F;. Let P be a point € ;. We say that P is f-visible

from F; if 3 a point Q € F; such that P(Q, the segment parallel to fi, does not intersect any

other obstacle or intersects only (; exactly at P and no other point. Each F; divides the

space in which the robot R is located from the space in which the fi-visible obstacles reside.

For example, in Figure 3.3, Fy gsr separates R from Ow s, the set of obstacles that are

n-visible from it.

Oyesr= {01, 03, 03}

Figure 3.3: Fwgsr separates R from Owgst

Let L, the center of R, lie inside an octree white node W. Let L, be the projection of

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 36

L onto the face Fyygsr of W. The 3D manhattan distance between L and L, is denoted by
d(L, L;) = m, (in Figure 3.4).

An obstacle O;, (a black node in the octree), that is fi-visible from Fy gsr, when
projected on Fwgsr, creates a black square, as shown in Figure 3.4. This projection is
denoted as O;; and we will refer to it as a black Nodal Projection. Each O;; stores the
distance from its corresponding 3D obstacle O; to F;, denoted as d(O, Fwgsr) = y in
Figure 3.4.

Let A be a closest obstacle point to L amongst all the obstacles € O. In Figure 3.4,
point A (on obstacle Oy) is fi-visible from Fygsr. In fact A can belong to an fi-visible
obstacle located in any of the outward directions of the faces of W. Let the projection of A
over Fywwest be A;. A being the closest obstacle point to the robot implies that no other
obstacle point exists strictly within the L; sphere centered at L, shown in gray in the same
figure. Its radius has a length of d(L, A) = d(L, L) + d(Ly, Az) + d(Ay, A).

Figure 3.4: a) L; sphere centered at L: no other obstacle lies inside b) top view

A shortest L; 3D path, (since it is monotone in all coordinates), between L and A passes

through the following points: L, L, A; and A. The length of this path is given by:

do(L) =d(L,A) =d(L,L;) +d(Lp,A) =m+Il+z+2z+y (3.1)

Equation 3.1 computes the 3D distance between any point in the face (here L;) and its
closest 3D obstacle. There may be many shortest paths connecting L with A, however, we

will use the specific one illustrated in Figure 3.5. The nature of this path is characterized as

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 37

follows: d(L, L) is the straight line between L and L, and is entirely inside W, therefore it
is free. d(Ly, A) is the distance from the robot projection to a closest point A that belongs
to an obstacle. Computing d(L,, A), in Equation 3.1, efficiently is the key to our approach.
We compute it by projecting the fi-visible obstacles of each F; onto it. The projections
induce a rectangular partition (grid) on the infinite planes by extending their boundary line

segments (see Figure 3.6).

Figure 3.5: Distance between a robot in W and its closest obstacle

—{};VEST WEST

9
L
m
Lyx----x
o
S

Figure 3.6: Rectangular partition generated by the projection of the obstacles
Now, we decompose d(L;, A) from Equation 3.1 into

d(Lx, A) = d(Lx, Lxx) + d(Lrx, A) (3.2)

where d(Ly, Ly,) is the manhattan distance between L; and its projection point L

onto a line of the grid, and d(L;, A) is the manhattan distance from the projection point

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 38

on the grid, L;,, to the closest obstacle point A. The term d(L,,,A) is the proximity
information that we store as a set of intervals along the lines of the grid. Each interval is
associated with the 3D obstacle that is closest to that portion of the line.

Figure 3.7 shows a line of the grid and the intervals produced by the obstacles of Fig-
ure 3.6. Interval I, is associated with obstacle O, and interval I3 has been associated with
O3. At collision detection time, when L, is projected onto a line of the grid, its projection
L, falls in at least one of the intervals computed for that particular line. Accessing the
interval where L, falls leads us right away to the closest 3D obstacle and the computation

of the term d(L,, A) in Equation 3.2 is then carried out.

WEST

Iy

%

ng,””XLT[

O il

Tt

ey
Intervals
LEERN

Figure 3.7: Distance intervals stored along a line of the grid

In equation 3.1, dp(L) provides a bound for the radius r of the robot. If r > dp(L) the
robot collides with an obstacle € O, otherwise the robot is collision free. Collision detection
requires first to find the node W in which the center of the robot is located. Another search
must be performed to find the region in the grid of each adjacent F; of W in which the
projection of the center of the robot falls. Once this stage is passed, collision detection with
a 3D EODM becomes a simple test that can be performed in constant time. The details are
discussed in section 3.2.

The obstacles’ projections divide F; into 2D rectangular cells, which are colored either
black or white. A black cell (called Nodal Projection) represents pseudo-obstacles, whereas
a white cell represents a portion of the plane for which there are no 3D obstacles lying
directly above it. Let the cell in which L, falls be ¢;.

Any cell divides the plane of an F; into four overlapping regions (north, south, east

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 39

and west) that extend to the outward directions around the boundary of the cell (see Fig-
ure 3.8.a). A black Nodal Projection requires an extra region denoted top because a 3D
obstacle lies directly “above” it. These regions are obtained by extending to infinity the
edges of the Nodal Projections. The stretched line segments are called “line-separators”.
Figure 3.8.b shows the regions created by each kind of cell. For Figure 3.6, the projection
O;r of the closest fi-visible 3D obstacle to L, from Fy ggr must lie in either at least one
of the four regions around c; or overlap it completely. The same principle applies to all the
infinite planes adjacent to W.

Each line-separator that bounds the cell divides the plane into two half planes. Similar
to our 2D EODM, one half plane corresponds to the outward normal direction, the other
half plane contains L;. Let O w EST(orsn) TEPTESEN the set of Nodal Projections on Fyygst
(of all the ni-visible 3D obstacles from Fyw gsr), that lie on the north outward normal of a

line separator S of cell c;.

a) b) ya

north 011'[

. | east
ngrth

<; east

south

s

S

5
s
@
&
<&

i west top east

for cell G :

OT[WEST (northf” ‘o 1TT /

[Black nodal Projection cell (] white cell

Figure 3.8: a) North and West regions of a cell b) Regions for black and white cells of Fy gsr

Up to this point, we have provided the characteristics of the F;’s. Now we will char-
acterize the shortest path between L, and the closest obstacle point. There are two cases,
either L, overlaps an O;; when projected onto an F; or it does not. The characteristics of

both cases will be discussed in the rest of this section.

3.1.1 L, falls in a white cell

Consider all the n-visible 3D obstacles from the WEST face of a white cube shown in
Figure 3.9. Focus only on the group of projections contained in O, wgsT(north)- Let point

A be an obstacle point (from O; € Owgsr(mortn))- Let Az be the projection of A onto

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 40

Fwest- Moreover, let L, be contained in a white cell and let L, be the projection of L,

on the (north) line separator S which separates A, from L.

Twesr
S ~ |

Figure 3.9: Proof for Lemma 2 with 3D L; metric

Lemma 2 If point A is a closest obstacle point to L., then it must be the closest
obstacle point (from O EST(nor th)) to L, thus, to the robot.

Proof The proof is by contradiction. Assume there 3 another point A" (from the same
or another obstacle O; € OWEST(north)) strictly closer (than A) to L. Figure 3.9 shows
the corresponding example. Notice that the projections of the obstacles over Fyygsr lie
above (outward direction of) the infinite line, (shown in dashed), passing through the north
boundary of the cell that contains L.

The monotonic path between L and A" must be included within the L4 sphere with center
at L and radius d(L, A). Additionally, we have d(L;,A) =z +y + z +1 (a monotonic
path, hence the shortest). Now, by assumption

d(A', L) < d(A, Ly)

But, we know

d(A, Ly)=z+y+z+1 and d(A, L;) =7 +y +7 +1
s>z 4y +2 +l<z+y+z+]

<:>:c'+y’+z’ <zr+y-+=z

= A’ is closer to L., than A, a contradiction. ¢

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 41

We extend Lemma 2 further by projecting L, onto each boundary of ¢;. L, generates an
L7 (edge_dir) corresponding to the direction edge_dir € {north, east, south, west} in which
the projection occurs.

Now, let
Oc; = {OxwESsT(north)Y OxwEsT(cast)V Oxw EST (south)Y Oxw EST(west) }

represent the set of obstacle Nodal Projections on Fyygsr, surounding c;. All the
projections in O, fall in at least one of the regions generated by the cell. Applying Lemma

2 to each Ly (cdge_air) Will return the closest obstacle projection point in each edge direction

(AWESTclosest_from_edge)’ Where ea'Ch

AWESTclosest_from_edge € Oci

Theorem 1 The distance between L and AwgsT, is the length of the

losest_from_edge

shortest monotonic path between the robot and the closest obstacle. Clearly,

AWESTclosest_fTOm_edge = edg}zl%”{ d(Lﬂ"IT(edge_dir)a OwWEST(edge_dir)) } (33)
where edge dir = { north | east | south | west }

3.1.2 L, overlaps a Nodal Projection

When L, falls inside of a black Nodal Projection it is necessary to consider, in addition, the
shortest path between L, and the 3D obstacle lying directly over it in the region denoted
as top. Let points A and A’ be obstacle points (from the same or different obstacles) visible
from Fygsr. There are two cases. In the first one, both, A and A’ belong to a region of ¢;
which is not the top one (for example north). In the second case A falls in the top region.

We present now the two subcases of Lemma 3 applied on FygsT.
Lemma 3.a If point A is a closest obstacle point to L;,, then it must be the closest
obstacle point (from Owgst,,,.,) t0 Lz, thus, to the robot.

Proof The proof is exactly similar to that of Lemma 2 applied for each edge of the cell

that contains L.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 42

Lemma 3.b, shown below, is also applied over Fy ggr, (see Figure 3.10 for an example).

Notice that the closest obstacle projection point to the robot, (point A), is exactly L.

Lemma 3.b If point A is a closest obstacle point € O; (amongst obstacles € Ow gsr),

to the projection point L,, then it must be a closest obstacle point to the robot.

Proof We present the following proof by contradiction. Assume there 3 another point
A’ from the same or another obstacle O;. Let A € Owgst(top) and let A’ be in the same
or another region, lying strictly closer (than A) to L, and d(L,A) =z +y + 2 +1+m (a

monotonic path, hence the shortest).

= d(L,A) < d(L, A)

But, we know d(L,A) =y+m and dL,AY=2'4+9y +2 +1+m
So+y+2Z+l+m<y+m
sty +2+l<y

= A’ is closer to L, than A, a contradiction. ¢

Figure 3.10: Proof for Lemma 3.b with 3D L; metric

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 43

To characterize the closest obstacle point from Fy gsr for Lemma 3, we extend Equa-

tion 3.3 as:
AWESTclosest_from_edge = edIgI(%Zl_IZdli’r‘{ d(L’lWr(edge_dw)a O’/rWE‘ST(edge_dir)) } (34)
where edge_dir = { north | east | south | west | top }

Using Lemmas 2 and 3 we have shown that the closest obstacle to the robot, once
projected, is the closest Nodal Projection to L;, no matter if the robot projection falls in a
black or a white cell. However, they apply only amongst Owgsr. We show next that our

proof extends to all obstacles.

3.1.3 Closest Obstacle Point Characterization

Let face_dir denote the directions (NORTH, EAST, SOUTH, WEST, FRONT, BACK)
in which L, the center of the robot, is projected over the faces of W. Similarly, Ly oce_dir
denotes the projection point of L in each face_dir. Let A face_dirgjosest_from_cage P€ the closest

obstacle point to each Ly f4ce_gir as defined in Theorem 1 and its extension in Equation 3.4.

Theorem 2 The closest obstacle point A jysest to L is given by

Aclosest = fmin { d(LaAclosest_fromface_dir) } (35)

ace_dir

where

{ d(Lﬂ—face—di’l"Aface—dirclosest_from_edge) } (36)

Actosest =
closest-from face_dir closest_from_edge

and facedir = {NORTH|EAST|SOUTH|WEST|FRONT|BACK}

Theorems 1 and 2 guarantee that the computation of the closest 3D obstacle to the robot
is performed taking in account all the 3D obstacles of the environment. Because we capture
the proximity information around the boundaries of the cells in the grid, the internal part
of the Nodal Projections is discarded during the distance computation (see sections 3.3.1
and 3.3.2).

In the following subsection, both, the description and the algorithm for our collision
detection scheme with a 3D EODM will be provided.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 44

3.2 3D Collision Detection

In order to explain how collision detection is performed for a 3D EODM, consider Fig-
ure 3.11, in which the manhattan 3D sphere represents our robot R, positioned at location
L.

z TW'

EsT. 7

XN
—

0y

o,

Owgst={0,, Op, 051,057}

Figure 3.11: Robot lying in an octree

The collision detection test with the 3D EODM is quite simple once the coarsest resolu-
tion node W, in which the center of R lies, has been found. In the pseudo-code, shown below,
procedure find white node() reports such a node in O(logN) for an octree with N leaf
nodes. Min_dist denotes the 3D manhattan distance between the 3D Closest_Obstacle
and R. Originally, Min_dist is initialized to an arbitrary large value.

If the node W is black, a collision is returned immediately. Otherwise, the center of
R is projected to all the boundary faces that compose W, producing the corresponding
projection points denoted by Ly fqce_dgir- In our sample figure, the center of the robot is
projected over face Fygsr and generates point L,wgsr. Let dist_face denote the 3D
manhattan distance between the center of the robot and its projection Ly f4ce_dir, (first term
of Equation 3.1).

We mentioned that each F; of W has associated an infinite plane F;. For our compu-
tation purposes, we limit F; to the workspace boundary. Each face plane F; is examined
in turn by the procedure Detect_Collision in face() (line 9 of the below pseudo-code).
Detect Collision_in face() not only returns the COLLISION/FREE Status of the col-
lision test for a single face, but also the Closest_Obstacle to L, (thus returning the clos-

est 3D obstacle to the robot by Lemma 2 and Lemma 3), and its manhattan 3D distance

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 45

(Min_dist).

The pseudo-code of our three dimensional collision test is stated as follows:

Detect_3D_Collision(EODM, Robot, Closest_obst, Min_dist)
Input : EODM, Robot
Qutput: COLLISION/FREE status, Closest_obst, Min dist

W = find_node(EODM, Robot—>center)
if (COLOR(W) == BLACK)
Closest_obstacle = W
Min dist = 0
return COLLISION
For each face F; of W
L. = project_robot(Robot, F;)
dist_face = distance_to_face (Robot, L,)

© 0 N O O b W NN =

Status = Detect_Collision_in_face(F;, L,, dist_face, Closest_obst, Min_dist)
if (Status)
return COLLISION

= e
N = O

. return FREE

For the moment, assume that each face plane F; of W has already captured the proximity
information d(L;, A) from Equation 3.1.

Given a particular face direction, let dist_to_face bed(L, L), the Ly distance between
L, and the center of the robot. L, must fall in at least one of the cells of F;. Let such
cell be ¢;. For every ¢;, irrespective of its color, all its edges (line separators), are tested
for collision using the function Detect_collision for_cell(), (line 21 below pseudo-code).
The robot center projection L, is projected again over each edge that bounds c;, originating
the corresponding point L,,. If ¢; is a Nodal Projection, then an extra collision test with
the 3D obstacle that generated it is required (lines 14-18 of the pseudo-code shown below).

The cell ¢; is examined in each edge direction (north, east, south, west), as in our
2D EODM model. Procedure Detect_collision for_cell() receives the edge Edge that
bounds ¢; and the projection L, of the robot center onto that particular edge. The L;
distance between L, and Edge, d(L;,L;.), is denoted by dist_edge (first term in Equa-
tion 3.2).

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE

Detect_Collision_in_face(Fj, Robot, L., dist_face, Closest_obst, Min.dist)

Input : JF;, Robot, L., dist_face
Output: Status(COLLISION / FREE), Closest_obst, Min dist

13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.

¢; = find_cell(F;, L,—>center)
if (COLOR(c¢;) == BLACK)
Min_dist = dist_to_obstacle(Robot->center, c¢; ->3d_obst)
Closest_obst = ¢; —>3d_obst
if (Min.dist < Robot->radius)
return COLLISION
for (Edge = NORTH to WEST)
L= project_robot(Edge, L)
Status = Detect_collision_for_cell(Edge, Robot, L.,
dist_face, Closest_obst, Min_dist)
if (Status)
return COLLISION
return FREE

46

Because Edge is a line separator, it stores a sequence of intervals. An interval is as-
sociated to the Nodal Projection that is closest to that particular portion of Edge on its
outward direction. Let I be the interval along Edge in which L, is contained. I points to
its closest 3D obstacle. The distance between them is d_interval_to_obstacle, which pro-

vides the last component for computing do(L) in Equation 3.1, (line 27 of the pseudo-code
shown below). dp(L) is represented by dist_to_clst obstacle. In practice, our imple-
mentation computes the distance between I and its associated 3D obstacle at runtime, a
step that requires only simple algebraic operations. dist_to_clst_obstacle is the bound
against which the radius of the robot is compared in order to find a collision (lines 28-32).

Detect_collision for_cell(Edge, Robot, L., dist_face, Closest_obst, Min dist)

Input : Edge, Robot, L.r, dist_face

Output : Status, Closest_obst, Min dist

25.
26.
27.
28.
29.
30.
31.
32.

I = get_interval(L,., Edge)
dist_edge = dist_to_edge(Lr., Edge)
dist_to_clst_obstacle = dist_face + dist_edge + I->d_interval_to_obstacle
if (dist_to_clst_obstacle <= Robot->radius)
if (dist_to_clst_obstacle < Min dist)
Min_dist = dist_to_clst_obstacle
Closest_obst = I->3d_obst
return COLLISION

The next section will discuss the creation of the 3D EODM.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 47

3.3 3D EODM Creation

As in the two dimensional problem, there are two possibilities to construct the EODM, a
global and a local approach. The local approach captures the proximity to the obstacles
only within the neighborhood of the white cube W. Only the 3D black nodes within the
parent cell of W are projected over its boundary faces. The global approach considers all
the obstacles of the environment at once, which means that all the fi-visible obstacles from
each boundary face of W will be projected over it. The global approach requires some
extra memory to maintain the connectivity between the white nodes of the EODM and the
adjacent face separators, which make it slower to construct when compared to the local
approach. We have chosen to work with the global approach mainly because the extra
computations required by the local approach during collision detection time (the distance
information must be retrieved and tested against the robot at each level of the tree until W
is found), will make it somewhat slower.

The infinite plane separators adjacent to the faces of the white nodes are obtained each
time the EODM is split. A face separator divides the free space contained inside of a white
node from the 3D n-visible obstacles. Three kinds of face separators are considered, (shown
in Figure 3.12). A face separator contains the proximity information to the 3D obstacles
lying to its left and to its right (above and below for the horizontal separators), for this

reason each face separator contains two grids.

z XZ_separator

Y YZ_separator

XY_separator

X

Figure 3.12: Face separators in 3D

The data structure of an EODM stores the dimensions of the environment and a pointer

to the root node. The number of child nodes of an EODM, num_ch, is a function of 2¢, where

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 48

d is the dimension of the workspace of the robot. Each white node of our EODM stores
a pointer to its adjacent face separators. Make_3D_EODM() is the procedure responsible for
constructing the EODM, creating the data structures for the face separators, connecting
them with the white nodes and filling the distance information. The corresponding pseudo-
code is shown at the end of this subsection.

All the children of a 3D EODM are examined in turn by the procedure Connect_3D_EODM()
(line 7 of the below pseudo-code). If a white child is found, all its boundary faces are linked
to its adjacent face separators by the procedure link white node (). Pseudo-codes for the
functions Connect 3D EODM() and link white node(), can be found in Appendix A.

Separate tree structures have been considered to organize the face separators. Each
face separator is inserted by procedure insert_separator() in a tree hierarchy during
the EODM split process (see Appendix A). The hierarchies of face separators are aligned
with respect to each coordinate plane in 3D space and are identified by XY_separator,
XZ_separator and YZ separator. The generic name used for plane separators is sep_tree.

Procedure £fill 3D separators() obtains the distance information for each face sepa-
rator (lines 5-7 of the below pseudo-code). The construction stage of the face separators is

explained in the next subsection.

Octree Make_3D_EODM(otree, EODM)
Input : simple octree otree

OQutput : an EODM

node_level level

child_number num_ch

octree_node currnode

3D_EODM eodm

1. num_ch = power(2.0, otree->dimen)

2. level =0

3. eodm = Connect_3D_EODM(otree->root, level, num_ch)

4. currnode = eodm->root

5. fill_3D_separators(eodm, currnode, level, XY_separator)
6. f£ill_3D_separators(eodm, currnode, level, XZ_separator)
7. f£ill_3D_separators(eodm, currnode, level, YZ_ separator)

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 49

3.3.1 Projecting the obstacles

In order to project the fi-visible obstacles from a face F;, we require a Z_ buffer structure.
For example, for an F; parallel to the XY plane, the Z_ buffer orders the n-visible obstacles
taking in account their proximity to F; using the z-dimension of the vertices of the obstacle
faces that are perpendicular and that directly face F;.

Our approach does not store a cell of the grid per se but only the portion of the boundary
of the cell that overlaps an adjacent line separator. We store those portions as intervals.
During the projection, Nodal Projections can overlap, therefore, clipping and updating
operations are performed for the intervals of the affected line separators. The resulting
new intervals must be associated correctly with their originating 3D obstacles. Figure 3.13
shows some examples. We use a dashed line to represent the intervals created by the Nodal
Projection of @1 and a solid line to represent the intervals generated by the Nodal Projection
of 04 along a line separator S. Figure 3.13.a shows S and the interval Iy, generated by Os.
Even though both obstacles are projected over the plane F;, only obstacle Oy generates
intervals on all the line separators because it is closest to the plane and occludes completely
;. Figure 3.13.b shows a partial obstacle obstruction, where each obstacle, when projected,
generates an interval on S. Finally, in Figure 3.13.c Qs is projected first and then ;. When
0, is projected it creates separator lines, (including S), and the interval I;. The Nodal
Projection of Q2 overlaps the separators created by the projection of Oy, (overlapping S

t00), therefore two intervals I, are created and associated with O,.

Projections Intervals

a)

L

b)

I

I

c) };

% s

Figure 3.13: Boundaries associated with each Nodal Projection

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 50

The algorithm that computes the proximity information for the plane separators is called
f£i11_3D_separators (), introduced in the previous subsection. For each face separator F;
in sep_tree we construct two grids in order to capture the distance information of the f-
visible 3D obstacles lying on each side of F;. The core of £i11_3D_separators() is shown

next.

£ill_3D_separators(otree, currnode, level, sep_tree)
Input : Octree otree, otree_node currnode, node_level level, Separator sep_tree

Output: sep_tree filled with the distance intervals

if (sep_tree == NULL)
return
Z_buffer = order_visible_obstacles(otree, sep_tree)
Black Nodal Proj = project_obstacles(otree, sep_tree, Z_ buffer)
Build_grid(sep_tree, level, Black_Nodal Proj)

fill_3D_separators(otree, currnode, level+l, sep_tree->left)

N O g W N

£ill_3D_separators(otree, currnode, level+l, sep_tree->right)

The Z buffer is constructed by order visible obstacles(). The obstacles are pro-
jected over the face separator using project_obstacles() starting with the farthest. The
Nodal Projections are kept in the list Black_Nodal Proj. Then, the grid is constructed
by procedure Build_grid(), which applies the sweep-line operation to Black Nodal Proj
in order to fill the 2D line separators. The whole process is repeated recursively for all
the remaining face separators in sep_tree. The distance intervals computation using the

sweep-line is described next.

3.3.2 Computing the intervals for the line separators

There are two kinds of line separators in a grid, vertical and horizontal. !

The process
described in this subsection applies to all the line separators of a grid. To make the contents
of this subsection easier to explain, we have chosen to work with a vertical F; and only
with its n-visible obstacles lying in the WEST direction. The sweep will be applied over a

horizontal line separator using the Nodal Projections lying on its north outward direction?,

1We use the terms vertical and horizontal somewhat arbitrarily. They denote separators parallel to the
axes within the projection plane.
20ur implementation also takes into account those Nodal Projections that are cut by a line separator.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 51

in other words, only the Nodal Projections € Ow gsr(
Figure 3.14).

y of a cell ¢; are considered (see

north

Figure 3.14: Visible obstacle projections from the north boundary of c;

Let O

our example in Figure 3.14, O

) be the set of black Nodal Projections generated by Owgsry,,..\)- For
= { O1ir, O2z, O3,} = Black Nodal Proj. Let

TWEST popth
TW BST(p0rth)
Black_segments represent the list of those segments of the Nodal Projections € Oy, ,, Tinorth)
that are visible? from the north direction of S. For the Nodal Projections in Figure 3.14
Black_segments = {s1, $2,53}. A segment € Black_segments stores the distance between
its 3D obstacle and the projection face as a weight w;.

In theory, a projection face F; extends to infinity, however, for programming purposes
it is bounded by the dimensions of the workspace. For the same reason, each line separator
S, which in theory is an infinite line, is also limited by the boundaries of the projection face.
Each bounded F; has a well defined coordinate frame. We also associate an origin point
with each line separator using the face’s coordinate frame as a reference.

The endpoints of each segment included in Black_segments are sorted in a list, (called

Ordered_endpoints), according to their 3D L distance to the origin of S. * The sorting is

performed by procedure sort_endpoints().

3x-visible or y-visible depending on the direction in which the sweep is performed.

“This distance not only includes the length of the path from an endpoint to the origin of the separator,
but also the weight w; of the segment that owns such endpoint.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 52

A sweep_line() process is used to traverse all the endpoints in Ordered endpoints.
Two events stand out: the sweep-line, L, crosses for the first time a segment (a left end-
point is encountered) or the sweep line abandons a segment (a right endpoint is tra-
versed). Some bookkeeping operations must be performed in each case. To keep track
of all the segments that are encountered by the sweep-line at a particular time, a list of
Active_segments is maintained. When the sweep-line crosses a segment s, the opera-
tion above (s, Active segments) returns the active segment lying immediately above (or
collinear with) segment s that is also intersected by the sweep-line. Additionally, proce-
dure below(s, Active_segments) returns the active segment located immediately below
(or collinear with) s that is also intersected by the sweep-line. The partial order (above, or
below) in Active_segments is given by the y-coordinate of the endpoints of the segments
for an horizontal sweep. When a vertical sweep is performed, the order is maintained by
the x-coordinate of the segments’ endpoints.

Let the endpoint that is being currently examined by the sweep line be current _point.
If current point is a left endpoint, its segment s, is inserted into Active_segments. If the
sweep is horizontal and performed in the north direction the insertion takes into account
the x-coordinate of the left endpoint of s. For a sweep performed in the south direction, the
right endpoint of s is used. When a vertical sweep in the east or west direction is performed,
the y-coordinate of the lower endpoint of s is used.

Once inserted, segment s has to compete with its adjacent neighbors in Active_segments
to verify if it can generate a new interval along S, in other words, to verify if s is closer
to S than any other segment within its neighborhood. Such neighbors are identified by
Above_active_seg and Below_active_seg. In case they exist, they must have been inserted
by previous iterations in Active_segments.

To possibly generate a new distance interval, procedure compute_voronoi(), (lines 7,
10 and 16 of the below pseudo-code), obtains the intersection point, VP, of the Voronoi
edge between two given segments and S. If VP exists, update_intervals() manipulates
the intervals of S according to the event code produced by compute _voronoi(). An event
code determines when to open a new interval, close, or preserve the current interval of S.
An interval is updated only if VP falls beyond the intersection of the sweep-line (passing
through current point) and S. The opposite situation implies that there exists another
segment closer to S than the current segment s that was examined in a previous iteration.

In this case, the current interval is not altered. The Voronoi edge computation and the

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 53

criteria applied to obtain the event codes for the example that will be presented in this
section are discussed in section 3.3.3.
Given two segments sl and s2, compute_voronoi(sl, s2) returns the following event

codes:

e 1 = keeps s1 as the closest segment to the current interval
e 2 = s2 remains as the closest segment to the current interval
e 21 = closes the current interval, associated with s2, and opens a new one for s1

e 12 = closes the current interval, associated with s1, and opens a new one for s2.
The pseudo-code for the sweep-line algorithm is presented below:

sweep_line(S, Black_segments)
Input : S, Black_segments

OQutput: S modified with the intervals

1. Ordered_endpoints = sort_endpoints(Black_segments, S->origin)

2. do

3. current_point = top(Ordered_endpoints)

4, if (current_point is a left endpoint)

5. insert(current_point->segment, Active_segments)

6. if (Above_active_seg = above(current_point->segment, Active _segments) exists)
7. VP = compute_voronoi(current_point->segment, Above_active_seg)

8. update_intervals(S->intervals, VP)

9. if (Below_active_seg = below(current_point->segment, Active _segments) exists)
10. VP = compute_voronoi(current_point->segment, Below_active_seg)

11. update_intervals(S->intervals, VP)

12. if (current_point is a right endpoint)

13. Above_active_seg = above(current_point—>segment, Active_segments)

14. Below_active_seg = below(current_point->segment, Active_segments)

15. if (Above_active_seg && Below_active_seg exist)

16. VP = compute_voronoi(Above_active_seg, Below_active_seg)

17. update_intervals(S->intervals, VP)

18. delete(current_point->segment, Active_segments)

19. Ordered_endpoints = Ordered_endpoints->next

20. while (Ordered_endpoints is not empty)

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 54

When current_point is a right endpoint, the current segment is no longer traversed
by the sweep-line. Before it is deleted from Active segments, it is necessary to examine if
the neighboring segments (Above_active_seg and Below_active_seg) can generate a new
interval (lines 12-17 of the sweep_line() pseudo-code).

To demonstrate how the sweep line algorithm operates, consider the example illustrated
in Figure 3.15. Let the white node where the sweep is applied be node 5 and the projection
face be Fwrsr. The n-visible 3D obstacles belong to the set Ow ggsr. Note that only those
projections in OrwEsT(nortn) (lying above or intersecting S) are taken in account for the

sweep. For the sample figure O wgsrnorth) = { O2ry Os215 O337y Oz }-

WEST

z buffer
%[0 % %

QVEST(north)

‘0211 032]-[033]-[071-[‘

S

Figure 3.15: Visible obstacles from Fw gst for node 5

The notation for the endpoints of the segments in our example is ep(s,¢), where s indi-
cates the segment to which the endpoint belongs and e indicates whether it is a left (1) or
a right (r) one.

From Onw EsT(north), the y-visible segments from the north boundary of S are extracted,
producing the table of Ordered_endpoints that is shown in Figure 3.16. The segment to
which an endpoint belongs and its manhattan 3D distance to the origin of S, (located at
(0,0)), are also recorded.

In the first iteration, current_point is epg;. Segment s is inserted in Active_segments.
In the next iteration current_point is epg,, a right endpoint. The sweep_line() (lines
13-14) looks for neighboring segments in Active segments. However, there are none
(Above_active_seg and Below_active _seg are empty), therefore s is the closest segment
to S, and it is associated with the first interval I, starting at (0,0). Next, current_point

is epg,, a special case because we have two consecutive endpoints in Ordered_endpoints

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 55

TWEST
64—
| Ordered_endpoints
12 |
T I
! endpoint [€P |ep (€P |ep |ep (ep |ep |ep
S : 21| 2r| 321\ 71| 32r| 33| 33r| 7r
7 |
8 I segment | S, | S5 S5,18 515y, 1551555,
I
distance
N - ioogn (0| 81216 16]16 /20 24
N " weight |0 | O] 4] 0 4|4| 4|0
L Sy Sgs Sg3 ! g
I
N - i 1 +— §
0. 4 8 12 16

Figure 3.16: Ordered_endpoints for the sweep

belonging to the same obstacle. In our implementation, before deleting so we keep it in
Active_segments for further testing.

When point epsy; becomes current_point, segment s3o is inserted after so in the list of
Active_segments. Although both segments are collinear, their placement in the list indi-
cates that so is traversed before s32 by the sweep-line. In this case, s, becomes Below_active_seg
while Above_active_seg is empty.

Segments sy and s3o are collinear and we < wse. Their Voronoi edge computation, (lines
9-11 above pseudo-code), is described in section 3.3.3.3. Figure 3.17.a shows a graphical
example, where the intersection of the Voronoi edge with S, (VP), is located at point (12,0).
The event code determines that interval I, must be closed at VP and an interval I,,, must
be opened for s3y starting at VP too. The dashed line segment with an open arrow in
Figure 3.17 indicates that I,,, has not been closed. After this operation, sy is deleted from
Active_segments.

When ep7; becomes current_point, sy is inserted in Active_segments after s32, which
implies that s3o is located below s7. The Voronoi edge characterization for these two over-
lapping segments, where w; < wss, is presented in section 3.3.3.2. In this particular case,
the Voronoi “edge” intersects S at VP = (16,0) and bounds the dashed area in Figure 3.17.b.
All the points inside it are equidistant to both s7 and s3o. By default, our implementation
choses the segment “below”, (s32), as the closest one to S. For this reason the current interval

I.., is not modified.

5§32

In the next iteration current_point is epsg,, the right endpoint of s39. Above_active_seg

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 56

a) current b) current
segment segment

. Below . Below
Active_segments : Active_segments :

161 16 1
124+ 124
s7 s7
8 8
4 4
Sy S32 i Sz
VP
— — s — S
0 4 8 12 16 0 4
............. U PR
Is 2 Is gy Isy

--- Voronoi edge

Figure 3.17: a)Voronoi edge between segments 2 and 32 b)Edge between segments 32 and 7

is 87, but there is no Below_active_seg in Active segments (lines 12-15 above pseudo-
code). Therefore, s3o is eliminated from the list.

Then current_point is epss;. s33 is inserted in Active segments “below” s;. We have
again two overlapping horizontal segments with w7y < wss (see section 3.3.3.2), for this
reason the Voronoi edge intersects S at VP = (8,0) (see Figure 3.18.a). In consequence,
the event code indicates that ss3 is closer to S than s;. However, the relationship between
segments s3o (owner of the current interval) and s33 remains unknown. An extra comparison
between them is performed. The new VP is located at (12, 0) given that s and ssg3 are
collinear and w3s == w33 (see section 3.3.3.3). The Voronoi edge in Figure 3.18.b indicates
that the interval (0,0)-(12,0) is closest to s32, whereas the interval (12,0)-(16,0) is closest
to s33. Therefore, the event code determines that the current interval must be re-assigned

from I;., toI

532 533"

a) current b) current current
segment interval Bel segment
i . Above elow
16 4 16 |
12 + 12 +
s’7
8 8
4 1T 4 T
) vp_” Ss3 ‘ Saz yp S33 ‘
T £y + + s T T T S
o) 4 P 8 12 16 o) 4 8 12 16
i
mmm e[e e e mm e o b
Isy i Tsgs Isy Isgg
—-=-=~= Voronoi edge'

Figure 3.18: a) Edge for segments 33 and 7 b) Current interval is re-assigned from I, to I,

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE o7

For the next iteration current point is epss,, the right endpoint of s33. It is eliminated
from Active segments because Below_active_segment does not exist. Now the list has
only one element, s7.

Finally, current_point is the right endpoint ep7,. sy has no neighbors in Active_segments
and it is removed. The list empty because all the points have been processed. If at the
end of the process there is an open interval (e.g. Is3) it is closed. The intervals that were

obtained for this example are shown in Figure 3.19.

1 _"[}‘WEST
12+
Sq
g L
4+
S2 Sgp Sgz |
1 i 1 i S
0 4 8 12 16
-
Is, Isgg

Figure 3.19: Intervals after the sweep

3.3.3 Computing the Voronoi Edge between two segments

In the previous section we presented the core of EODM building process: the sweep-line. In
order to determine when to open or close an interval, the intersection of the Voronoi edge
(between two obstacle segments) and the line separator S is obtained. The computation
of the Voronoi edge is performed by algorithm compute_voronoi(), which is shown at the
end of this subsection. Although we only describe the computation of the Vornoi edge for
horizontal segments, the vertical ones are addressed using similar strategies.

Given two obstacle segments, let w; be the weight associated with the first segment (s1)
and let wy be the weight associated with the second segment (sg). Recall that w; is the
Manhattan distance (obstacle O; to F;) from the black node that gave rise to the Nodal
Projection whose segment is s; to the projection face. Our algorithm identifies three basic

conditions: w1 > wo, w1 < Wo, Wi = Wo.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 58

During the sweep, the Voronoi edge is computed only between two endpoints (e.g. that
belong to two non overlapping segments) or using various “salient” points from the two
competing segments. Both situations will be described with more detail in the next subsec-

tions.

3.3.3.1 Voronoi Edge for two endpoints of non-overlapping segments

The procedure determine Voronoi for_endpoints() performs the set of operations de-
scribed in this subsection. Given two non overlapping segments, the shape of the edge is
computed using the pair of endpoints (one belonging to each segment) that are closest to
each other. Determining how the Voronoi edge divides the plane for this particular end-
points depends not only on their difference in x and y coordinates (dx and dy respectively),

but also on their weights as described next.

e a) Case I: w; > wo
The horizontal subcases belonging to this group are shown in Figure 3.20. The vertical

cases c4, c5 and cg are solved by symmetry.

dx S2 S1
P E L
i dy X——x--------- x——X
| S1 S2
X X---------- e XX
51 c S2 c
€ 2 3
P S1
XK= [*X
1 i D x—X
! s, Sy
””””” s | s, S
1 2
¢ Cg Co

Figure 3.20: Case I: w; > ws without segment overlap

Let point VP be located at coordinates (x,y) in the projection face F;. The condition
for VP to be part of the Voronoi edge between two segments s; and so is that the
distance from s; to it must be the same as the distance from VP to ss. Figure 3.21.a
shows the general form of the Voronoi edge for subcase ¢; without considering the
weights of the segments. Notice that the shape of the edge is determined strictly
by the coordinates difference components, dx and dy. Figure 3.21.b shows that the

Voronoi edge is also influenced by the weights of the segments, however the effect is

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 59

only a shift in the vertical direction, (horizontal shift for vertical segments), and the
shape of the edge remains the same. The equations of the Voronoi edge for the rest

of the subcases in Figure 3.20 are computed in a similar fashion.

y=dx+dy-y wl+y=w2+dx+dy-y

y = (dx + dy) y = (W2-wl) + (dx +dy)
2 2

Figure 3.21: a)Voronoi edge, no weights b) As wq, wa change, the edge shifts up or down

The different shapes of the Voronoi edge, for subcase ¢; are shown with a bold dashed
line in Figure 3.22. The intervals that the edge generates for an horizontal separator
are shown too. Notation I, /I, implies that the points in the interval are equidistant
to both segments. If a sweep is performed in the north direction, the event code
for Figure 3.22.b indicates that an interval for s; must be closed and a new one
must be opened for s9. The order is reversed is the sweep is performed in the south
direction. Moreover, in Figure 3.22.d, the Voronoi edge will pass below the projection
plane, therefore all the points in the plane are closest to si. If we use the equation
in Figure 3.21.b to find the y-coordinate of VP, the value is larger than that of the

vertices of so.

a) sy b) Sy
P x——X P x——X
: -k
PO S S P N
1 S i S
1
Isl /ISZ 1 ISZ ISl i 132
Cc
) sy d) S,
L ST x—x | T e *x——X
x—;é ——————————— XX -
S S
Isl Is;
=== Voronoi edge

Figure 3.22: Shapes of the Voronoi Edge when computed for endpoints

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 60

When the competing segments are collinear, the Voronoi edge is simply a vertical
line for horizontal segments, which can be shifted to the left or right according to
the relationship between the weights. Figure 3.23 shows a graphic example and how
the equation of the Voronoi edge is affected. For vertical segments, the Voronoi edge

is horizontal and is shifted up or down according to the interaction between their

weights.
a) b)
dx
- 1
x ! !
1 1
! 1
S, ivp 2 S v S2
x—x———*—-f&—o x—xwz(777777 ——o
! Q ! Q
T > T D
1
1
Is, Is, Is, ! Is,
X =dx -x wl+x=dx-x+w2
x=dx X = (w2-w1) + dx
2 2

Figure 3.23: Voronoi edge for collinear segments: a) no weight b) weight

e b) Case IT : wi < wo
Each subcase of Case I has an analogous one in Case II, the only difference is the
switch in the weights of the segments. For this reason, these subcases are solved in
a similar way as in the previous category, exploiting the geometry of each kind of

circumstance.

e ¢) Case III : w; = wy
This case is the simplest because the weights do not influence the computation of the
Voronoi edge. Case I1I is solved with the aid of compute_V_edge for_two_points(),
the Voronoi edge computation for the 2D EODM that was presented in Chapter 2,

section 2.3.2.

For horizontal collinear segments, the dx component is computed using the endpoints,
one from each segment, that are closest between themselves. The Voronoi edge is the
vertical line that passes exactly through the mid point of dx (see Figure 3.23.a). There
is no shift due to the equality of the weights.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 61

3.3.3.2 Voronoi Edge for overlapping non-collinear segments

When segments overlap there are two cases. If their weights are different, the algorithm
determine_Voronoi_for_segments() is used to compute their Voronoi edge. In other case
we use determine Voronoi for_segments_equal weight (). In both cases, the edge com-
putation is based on the endpoints operation determine Voronoi for_endpoints(), which
was described in the previous subsection. Here, the three conditions for the weights are also

present.

e a) Case I: wy > wo
The subcases contained in this group are shown in Figure 3.24. The Voronoi segment
can have different configurations that directly depend on the weight of the segments
and the extension of the overlap, see for example Figure 3.25, where the Voronoi
edge of subcase ¢y (from Figure 3.24) is shown in a dashed line and it is computed
for the horizontal separator S. The figure also shows the intervals along S and their
associated closest segment. If an horizontal sweep is performed in the north direction,
the event code for the segments in Figure 3.24.c is 12 (close the current interval for
s1 and open a new one for s9). If the sweep is performed in the south direction, the
event code is 21, causing the closure of the current interval for so and the opening of
a new interval for s;. Notation I, /I, denotes that the 3D distance from s; to a
particular interval along S is the same as the distance from that interval to segment
so. In that event, if the current interval was associated with s; in a previous iteration

of the sweep_line (), our algorithm discards ss.

Sy s,
x—X Sy Sy —_
X—X —X
s, X x—x XX

1 s, 51
c
CO 4
$2 S2
Sy —X —— X Sy
—X
X A X X
X ! ' LS
Sy 51
¢ ¢2 €3 c

Figure 3.24: Case I: w; > wy for overlapping segments

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 62

a) c)
s, s,
""" *——x e
| Bl
....... - X”””" S X ----=-=-
i S1 i Sq
! !
I I i I s I ! o
[P — [- —i— I —
51/ 21 s, S; i s,
b) d)
S2 S2
————— P E— R
- —h | b o
Ko X S Rt IE e
Sy i Sy i
i i
I i I S I 'I I
- — el T - -
Sl : 2 S i Sll Sz
----- Voronoi edge

Figure 3.25: Possible Voronoi edges for overlapping segments for case ¢o in Figure 3.24

Determining the Voronoi edge for two overlapping segments s; and sg requires sev-
eral calls to determine Voronoi for_endpoints(). We show the edge computation
for Figure 3.25.d. The segments’ endpoints are labeled as in Figure 3.26. The first
point of the edge is found by determine Voronoi for_endpoints(epii, epo1) in
Figure 3.26.a. Then, epo; is projected over s; to generate point epsir. The proce-
dure determine Voronoi for_endpoints(ep21, ep2ir) produces the second point
of the edge in Figure 3.26.b. A similar process is performed for ep19, which is projected
over s, (see Figure 3.26.3). Finally, the last point of the edge, shown in Figure 3.26.d,

is created by determine Voronoi for_endpoints(epio, epao).

a) b)
P21 P22 epyy ep,,
e I S
s, ey *
epu ep12 Epu eleT[ePlz
S s
) d)
epy Pz epy, @ _mﬁe";n—epxn
* ’ s o o2
MO BECHREN PN
A A S *7 -
Py ePy €Pyy ePy
S S
--=:= Voronoi edge

Figure 3.26: Computing Voronoi Edge for Figure 3.25.d

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 63

The reader can appreciate that exists certain resemblance between the Voronoi edges
shown in Figure 3.22 and those from Figure 3.25. The x-coordinate of a Voronoi
point VP on the projection face that forms part of the edge between two non collinear

horizontal overlapping segments always has the general form:

d+w

5 =% (3.7)

where d is the difference in coordinates relationship (dx,dy) that defines the position
of the edge and w is the weight relationship that represents the up/down shift. The

y-coordinate of a VP is computed with a similar equation.

e b) Case Il : wi < wy
The pair of segments falling in this category are solved using a similar strategy to that
of Case 1.

e ¢) Case III : w; = wy
Procedure determine Voronoi_for_segments_equal_weight (), computes the Voronoi
edge for non collinear segments. The strategy is similar to that of Case I. Essen-
tially, at every segment endpoint, it applies the 2D EODM Voronoi edge computation,

compute_V_edge_for_two_points(), previously presented in Chapter 2, section 2.3.2.

3.3.3.3 Voronoi Edge for overlapping collinear segments

The three main categories are presented next.

e a) Case I: wi > wo
For horizontal collinear segments, the Voronoi edge is always vertical. Figure 3.27
shows some examples of the edge, (in dashed lines), and the intervals that it generates.
Figure 3.27.c lacks of a visible edge because, when the corresponding equation is
applied, the x-coordinate of the Voronoi edge falls before the left endpoint of segment

s1. This indicates that segment sy is closest to the whole horizontal separator S.

Let x represent the x-coordinate of the Voronoi point VP. Let w represent the lateral

shift of the edge produced by the interrelation between the weights of the segments.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 64

When two horizontal segments are collinear (see Figure 3.28), dy = 0 and equation 3.7

must be modified as:

dx +w
5 (3.8)

a) b) c)

1 1

i S1 S2 S S2 S1 S2

X—‘—X—. X H e o A . °

i i

] S 1 S S

1 1

i i

: I
151/152: Isz Is1 So . Isz

- === Voronoi edge

Figure 3.27: Possible Voronoi edge cases for collinear overlapping segments

dx
X !
!
!
i w
Wy AVP 2
o r)
I N
S, S2

—me Voronoi edge

Figure 3.28: Computing the Voronoi edge for two collinear overlapping segments

e b) Case Il : w1 < wy

All the subcases that belong to this category are solved taking advantage of the ge-

ometry of each kind of situation using the methods described in Case I.

e ¢) Case III : w; = wy

For collinear segments, the Voronoi “edge” presents always the form shown in Fig-

ure 3.29. The segments’ overlap generates a section for which S is closest to both of

them. In the graphic example, the sweep line algorithm applied on a north separator,

associates with s; the portion of S were the segments overlap.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 65

S2

g ———————
Y -

Is, I /T, 0 T

=== \Voronoi edge

S2

Figure 3.29: Voronoi edge for collinear overlapping segments with equal weight

Algorithm compute voronoi(s1, s2) is presented below. The procedures of lines 3,
4 and 5 return the intersection point of the Voronoi edge with the separator S, (VP), and
the resulting event code (e) in order to update accordingly the intervals. The endpoints to

test are chosen depending on the direction in which the sweep is performed.

compute_voronoi(s1, s2)
Input : segment sl, s2
Output: point VP, /* intersection between Voronoi edge and S */

event_code e

if (overlap(s1, s2))
if (sl->weight == s2->weight)
return determine Voronoi for_segments_equal weight(s1, s2, VP, e)

else return determine Voronoi for_segments(s1, s2, VP, e)

O W N

else return determine Voronoi for_endpoints(s1, s2, VP, e)

3.4 Algorithm Make EODM

This section presents the complete algorithm for constructing an EODM. It requires an
input file that specifies the dimension of the environment, as well as the locational codes
of the obstacles. From the file information create_simple octree() will return either a
simple quadtree or octree and then the corresponding EODM construction algorithm will
be called.

CHAPTER 3. EXTENDED OCTREE DISTANCE MAP (EODM): 3D CASE 66

Make EODM(FILE input_file)
Octree otree

Quadtree gtree

1. Read from input_file the value DIMEN

2 if (DIMEN == 3)

3 otree = create simple octree(input file, OCTREE)
4. return Make 3D _EODM(otree, input file)

5. else

6 qtree = create_simple octree(input _file, QUADTREE)
7 return Make 2D _EODM(gtree, input._file)

Chapter 4
Experiments

We implemented routines to build an EODM from an octree representation of the environ-
ment and to detect collisions of an L spherical robot. Note that the former needs to be
done once. Our results compare the DM, Octree, ODM and EODM in terms of memory
requirements and speed of collision detection to quantify the various tradeoffs in 2D and
3D. Our routines are implemented in C and all the results we present are reported for a Sun
Ultra 10 platform with 440 MHz UltraSPARCIIi processor.

4.1 Experiments for 2D models

We generated five environments to test the performance of EODM. Figure 4.1 shows a

manhattan robot sphere in environment 3, which was also used by Jung [26].

Figure 4.1: Robot manhattan sphere in a 2D environment

67

CHAPTER 4. EXPERIMENTS 68

The memory needed (in Kb) for each approach is shown in Table 4.1 for each different
environment (env. five is a chessboard pattern). EODM is seven to twelve times more
memory intensive than ODM. However, EODM still provides a drastic improvement in
memory needed (10%) compared to a DM. This percentage would be further reduced for finer
discretizations and higher dimensions. We mention in passing that it took between 0.5 and
0.79 milliseconds to create the EODM from an octree for the five (256x256) environments,
(including the chessboard), roughly two to seven times slower than an ODM.

Table 4.1 also shows the CPU time that it took to create an ODM and an EODM.
EODM can be up to 36 times more expensive to compute than an ODM.

Memory usage (Kb) Creation time
256x256 (m sec)
Env | Octree | ODM | EODM | DM | ODM | EODM
0.064 | 0.080 | 0.620 65 0.1 0.2
0.548 | 0.570 | 6.860 65 0.9 8.0
0.744 | 0.780 | 8.780 65 1.2 23.5
0.904 | 0.962 | 9.260 65 1.1 39.6
5 0.996 | 1.060 | 10.220 | 65 0.9 27.8

Table 4.1: Memory usage/Creation Time for Quadtree, ODM, EODM and DM for five workspaces

B~ W N~

The search algorithm used to test for collision using Octree and ODM is depth-first,
starting at the root of the tree. The successors of this node will be evaluated in turn and
added to a list of target (grey or black) nodes to be explored in the next iteration. The
search is performed as deep in the tree as possible by visiting a node and then recursively
performing depth-first on all the target nodes adjacent to that node. In the worse case, the
Octree explores the entire tree. In comparison, in ODM, the search is not that exhaustive.
It is only performed for a specific number of levels within the tree (minimum and maximum
NSI). In average, only a small portion of the tree is explored.

For collision detection we used an L spherical robot with a radius varying between one
and two units (in pixels), and randomly changed its location 100 times. For each location
and radius, we ran the test 100 times to discount fluctuations due to other processes. In
order to compute the run times we used the function ftime (). The run times reported are
the averages of these 10,000 runs for each environment. The cpu time includes the time
needed to locate the white node in which the robot center lies. The collision detection times

(in microseconds) and efficiency percentage for each approach are shown in Table 4.2. These

CHAPTER 4. EXPERIMENTS 69

results show that EODM speeds up collision detection by a factor of two to seven against
a conventional octree and by a factor of approximately two to five when compared with an
ODM.

The maximum time observed for a single EODM test is about 0.097 milliseconds, when
all the edges of the white node are tested for collision. Figure 4.2 shows the quantitative

trade-offs of memory/CPU time for environment five.

CPU time (u sec) Run-times ratio
256x256 Octree ODM
Env Octree | ODM | EODM | DM | over EODM | over EODM
1 111.6 98.5 57.7 0.216 1.93 1.71
2 89.3 87.8 65.1 0.209 1.37 1.35
3 109.5 81.2 63.4 0.209 1.73 1.28
4 117.5 61.5 48.9 0.216 2.40 1.26
5 267.8 | 1914 36.1 0.212 7.42 5.30

Table 4.2: CPU run-time for Quadtree, ODM, EODM and DM for the workspaces

300 |
O oOctree
250 +
R
Y 200 4+
N O obM
T 150 +—
I
M
g 100 4
(psec)
M 50 +—
| } | } | | | | | i@ EODM (‘)Distance Map
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 --- 65536
STORAGE SPACE (bytes)

Figure 4.2: Qualitative Memory/Runtime trade-offs for env. 5

4.2 Experiments for 3D models

We used five 256 x 256 x 256 different environments. The memory needed for each environ-
ment, in MB, is presented in Table 4.3. EODM is about 20 times more memory intensive
than an octree and an ODM. However, EODM only occupies 6% of the memory used by a
DM.

CHAPTER 4. EXPERIMENTS 70

Memory usage (MB) Creation time

256x256 (msec)
Env | Octree | ODM | EODM | DM | ODM | EODM
0.116 | 0.140 | 2.236 16 1.0 26

0.240 | 0.330 | 5.704 16 1.2 112
0.368 | 0.458 | 8.792 16 1.7 363
0.408 | 0.606 | 9.112 16 3.7 358
5 0.444 | 0.624 | 10.496 | 16 5.8 500

Table 4.3: Memory usage/Creation Time for Octree, ODM, EODM and DM for five 3D workspaces

B~ W N~

Table 4.3 also shows the CPU time that it took to create an ODM and an EODM for
each environment. Starting from an octree, EODM can be way more expensive to compute
than an ODM.

For collision detection we used an L; spherical robot with a radius varying between one
and two units. We randomly changed its position 100 times. For each location and radius
we ran the test 100 times to discard fluctuations due to other processes. We report the
averages of these 10,000 runs for each environment. The CPU times include the time that
it takes to locate the octree node in which the center of the robot falls. Collision detection
times (in microseconds) and efficiency ratios for each approach are shown in Table 4.4. Our
results show that EODM improves collision detection by a factor of 18 to 49 compared to a
conventional octree and by a factor of 19 to 40 when compared to an ODM. The maximum
time observed for a single sphere test takes about 94 microseconds, that is, when all the
faces of the white node and all the edges of their corresponding cells are tested for collision.

The run times we report were obtained using the function ftime ().

CPU time (p sec) Run-times ratio
256x256x256 Octree ODM
Env Octree | ODM | EODM | DM | over EODM | over EODM
1 1098.5 | 904.2 22.6 0.265 48.61 40.01
2 841.7 | 704.7 38.0 0.268 22.15 18.54
3 483.2 | 4014 26.2 0.254 18.44 15.32
4 743.1 | 676.8 39.0 | 0.267 19.05 17.35
5 964.2 | 635.7 21.1 0.262 45.70 30.13

Table 4.4: CPU run-time for Octree, ODM, EODM and DM for the 3D workspaces

Figure 4.3 shows graphically the run time for a subset of collision tests performed in

CHAPTER 4. EXPERIMENTS 71

environment 5 for all the approaches. The horizontal axis simply represents different lo-
cations for the robot sphere. The circles represent the CPU time of DM, the octree time
is represented by rhomboids, the ODM time as squares, and finally, the EODM time is
represented by triangles. Notice the almost “constant” behavior or our EODM. Figure 4.4
shows the quantitative trade-offs of memory/CPU time for environment five (a chessboard

pattern).

CPU COMPARISON

Figure 4.3: Memory/Runtime trade-offs for 3D env. 5

1000 -
90010 Octree
8001
700+

00 O ooM

500

400 —

mz—-——-4 zc=m

300
(usec) 200

1004
0 | Lo O} - op EODM QDistance Map
D e A I N

f [
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 16777216

STORAGE SPACE (bytes)

Figure 4.4: Qualitative Memory/Runtime trade-offs for 3D env. 5

Finally, we compared EODM, ODM and Octree’s cpu performance using the seven degree
of freedom robot model from Jung [26] covered by 159 spheres. Figure 4.5 and Figure 4.6
show the L; arm, whereas Figures 4.7 and 4.8 show the robot in a simple environment.
We tested four robot configurations, two of them in collision and two free of collision.
Although for a strict COLLISION/FREE answer the collision algorithm should stop as

soon as a sphere is detected in collision, we report on all the spheres in collision just for

CHAPTER 4. EXPERIMENTS 72

testing purposes. The results are shown in Table 4.5. In the first row, EODM is faster
than the other approaches because the configuration of the robot falls mostly inside white
nodes. EODM provides a significant improvement in performance (66-94%, average 75.5%)
compared to the octree and (51-89%, average 67.5%) compared to an ODM. DM is not

reported because its cpu time would be 159 times the single sphere cpu time.

Figure 4.5: Robot covered by 159 L, spheres

Figure 4.6: Another view of the robot

CHAPTER 4.

EXPERIMENTS

73

CPU time (msec)

256x256x256

Robot | Spheres Total CPU time Average time per Improvement (Ratio)
in required sphere Octree vs | ODM vs
Conf. | collision | Octree | ODM | EODM | Octree | ODM | EODM | EODM EODM

1 63 243 231 15 1.5283 | 1.4528 | 0.0943 16.20 15.40

2 147 50 35 17 0.3145 | 220.1 | 0.1069 2.94 2.06

3 none 80 74 20 0.5031 | 465.4 | 0.1258 4.00 3.70

4 none 7 56 26 0.4843 | 352.2 | 0.1635 2.96 2.15

Table 4.5: CPU run-time with 4 robot configurations (159 spheres)

Figure 4.7: Robot arm free of collision

Figure 4.8: Robot arm in collision

Chapter 5

Conclusions and Future Work

We introduced the Extended Octree Distance Map (EODM) for efficient collision detection
in static environments. EODM is a systematic hierarchical representation for distance maps.
It utilizes an octree as the base representation. Along the perimeter of each white node in
the octree, it stores a distance function that represents the distance of each boundary point
of the white node to the obstacle closest to that point. With an EODM, collision detection
becomes a simpler and faster process given that only a comparison between the radius of
the robot and the distance values, (indexed by the robot projection), over the boundaries
of the node in which the robot lies is needed.

We presented algorithms for creating the EODM as well as algorithms to use it for
collision detection. EODM is constructed once as an off-line process and then repeatedly
used for collision detection queries.

Collision detection with an EODM is a constant time operation once the node in which
the center of the robot is contained has been found. In terms of storage, EODM requires
more memory compared to a standard octree and an ODM introduced in [26]. The storage
space occupied by an EODM on average is proportional to the surface area of the objects
in the scene (as in an octree, but the constant of proportionality would be larger) and not
to the volume.

Our experiments in 2D and in 3D have shown that EODM (i) decreases collision detection
time dramatically over other ocree-based collision approaches and (ii) provides a reduction
in memory storage compared to a voxel Distance Map. This characteristics are shown

qualitatively in Figure 5.1.

74

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 75

O Octree

oom O EODM

O pistance Map

zZC?X

mz— -

STORAGE SPACE

Figure 5.1: Memory-Runtime trade-offs

5.1 Future Work

We would like to explore the advantages/disadvantages of our work compared to other
hierarchical representations, such as k-d trees, the BAR model from Duncan et. al [9] which
combines octrees and k-d trees, and other hierarchical structures. Octrees are good when
the data, in this case the obstacles, are uniformly or randomly distributed [38]. However
it is well known that they can generate a lot of nodes that contain no obstacles, see for
example Figure 5.2, which produces an expensive deep tree for collision detection. K-d
trees [9, 38] and other Binary Space Partition [6] based models produce fewer white nodes.
Their advantage is not only that they reduce the storage space, but also that they require

a shallower tree that can improve the search during collision detection.

*

Figure 5.2: Unnecessary white cells

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 76

In the same line of work we would like to experiment with the previous models in order
to provide a “fair” comparison with OBBTrees [31] and Sphere-based [8] models. Gipson, in
his empirical experiments with the Motion Planning Kit (MPK) [13], shows that VCollide
takes approximately 1 millisecond solving collision queries for the same robot model used
in this work.

EODM can be modelled using Ly distance too. However, the shortest path between the
robot and the closest obstacle point does not necessarily pass through the projection of the
robot’s center onto the faces of the node that contains it. In order to obtain the closest
obstacle we need to compute the distance from the robot’s center to all the obstacle points
that are closest points along the boundary of the node that contains the robot and select
the one with the minimum value. Certainly Lo metric will reduce the number of spheres
of our robot model, however, collision detection would be a slower process, not a constant
time operation.

With respect to our current implementation, we mentioned that EODM is built using
a global approach, where all the visible obstacles from the faces of each white node W are
projected at once. There’s also the option of using a local approach where only the obstacles
within the parent cell W are projected over its boundary faces. The local approach may be
faster to build and update each time a robot scans a new portion of the space in Sensor-
based motion planning. However it is slower than the global approach for collision detection
because the distance information has to be retrieved and tested against the robot at each
level of the tree until the node that contains the robot’s center has been found.

EODM stores redundant information. We would like to exploit the locality of the model,
(coherence) and remove the unnecessary line separators. For example, Figure 5.3.a shows a
white cell ¢;. Chances are that the intervals computed for the east direction of the vertical
separator S; will not change in the area comprised between S; and S3 making Sy unnessential
(Figure 5.3.b).

Currently, we store intervals along the line separators, which represent the set of bound-
ary points of white cells that are located closest to a particular obstacle. We still need to
compute the distance from a point in the interval to its closest obstacle during collision
detection time. In 3D, this process consumes most of the time. We propose instead to store
the perimeter function dp(s1, s2) itself and the two bounds of the white cell boundary over
which the function applies in the interval. Any point falling in between the bounds can

be evaluated right away, thus reducing the distance computation time. The question now

7

CONCLUSIONS AND FUTURE WORK

CHAPTER 5.

becomes how to model and store the perimeter function more efficiently.

/%/

A

/.//

A

Figure 5.3: a)Storage of redundant information b)Line separators removal

Appendix A

Procedure Connect_3D_EODM()

Let sep_tree be the generic name for either an horizontal or a vertical separator tree.
Connect_3D_EODM() preserves the connectivity between the white nodes of the EODM and
the projection faces. The pseudo-code is presented next.

Connect_3D_EODM(otree, parnode, lvl, MAX_CHILDREN)

Input : Octree otree, octree node parnode, node_level 1lvl

Output: EODM

1vl = 1vl+ 1
if (COLOR(parnode) == BLACK)
return;
for (chnum = 0; chnum < MAX_CHILDREN; chnum++)
chptr = parnode->child[chnum]
if (COLOR(chptr) == WHITE) /* WHITE child node, find separators */
for (face.dir = NORTH to face_dir = BACK)
if (face.dir is NORTH || SOUTH)
sep_tree = XY_separator
else if (face.dir is EAST || WEST)
sep_tree = XZ_separator
else sep_tree = YZ_separator
if (face.dir is SOUTH || WEST || FRONT)
node_dir = RIGHT
LEFT

else node_dir
insert_separator(sep_tree, chptr)
link white node(chptr, sep_tree, node_dir, face_dir)
/* GRAY or BLACK child node */
else Connect_3D_EODM(otree, chptr, lvl, MAX_CHILDREN)

78

Appendix B

Linking the white cubes with the

separators

Each white node of the EODM is associated with its adjacent face separators in each direc-
tion (FRONT, BACK, NORTH, WEST, SOUTH, EAST). Procedure link white node()

is presented next.

link white node(W, sep_tree, Sep.dir, Face_dir)
Input : octreenode W, Separator sep_tree, direction Sep.dir, direction Face.dir

Separator Snode

Output : Boundaries of W associated with a projection plane
1. value = get_reference point(W, Face.dir)

2. Snode = get_separator(sep_tree, value)

3. W->boundary[Face_dir] = Snode

4. for (i=0; i < NUM_FACES; i++)

5. if (W->boundary[i] == NULL)

6. return

For example, link white node(W, XZ separator, RIGHT, WEST) implies that a
vertical separator in the XZ plane is linked to the WEST boundary of a white node and the
n-visible 3D obstacles to project are located to its RIGHT side.

Procedure get_separator (), returns the id of the corresponding adjacent face separator
to each boundary of the white node. NUM_FACES, the number of faces of a white node, is

only used for clarity.

79

Appendix C

User’s Guide

We include a guide to use our system in order to generate an EODM in two and three
dimensions. Moreover, we describe how to use it to solve collision detection queries.
Input

The system reads the workspace information from a file with the extension *.lin. The format

of this file is as follows:

8
255 255 0
031, 3

20121, 5

Depth of the tree
Dimentions of the Environment

20123, 5
2013, 4
20301, 5
20303, 5
2031, 4
21, 2
2301,
3002,
3003,
3031,
3033,
3102,
3103,
3120,
3121,
3122,

List of Black Nodes
(Location Code, level)

N N N NN

Figure C.1: Format of the input file

Where the first line indicates the maximum number of levels in the tree. The second line
indicates size of the environment in the x, y and zth dimensions respectively. In this case
a 2D EODM of 256 x 256 units will be created because the value of the zth coordinate is

zero. The following lines in the file are a list of the black nodes that correspond to obstacles

80

APPENDIX C. USER’S GUIDE 81

in the environment. We assume that this information has already been obtained by the
sensors. The list is composed of pairs (LC,1v1l), where LC is the Locational Code of the
black node and 1v1 is the level of that node in the tree. The list in Figure C.1 produces the

environment shown in Figure C.2.

E 6x256.1 2]

Figure C.2: 2D environment from file 256x256.lin

2D EODM

To invoke the program, type in a console window the command:
> eodm2d < filename.lin >

where filename.lin is the input file that contains the description of the environment of
the robot.

The system allows you to test a robot using a graphical interface or using a command
menu. If you choose to use the interface, to place a robot in the environment press the left
button of the mouse. That will define the location of the center. Then, move slightly around
and press the middle button, which defines the length of the radius of the robot. Now, by
pressing the right button a menu appears that allows to test the robot for collision or exit
the system (see Figure C.3). The result of the collision test, the closest obstacle and the
minimum distance between the robot and the closest obstacle are displayed in the console.

If the graphical interface is not used, the statistics (memory used) of the environment

will be shown, and then you will see the following menu:

APPENDIX C. USER’S GUIDE 82

256x256.lin =

Figure C.3: Testing a 2D robot for collision

COLLISION DETECTION MAIN MENU
Choose:
[1] Enter robot positions/sizes from keyboard
[2] Get robot positions/sizes from file
[3] Generate/Test multiple random robot positions
[4] Perform collision detection
[7] Quit

-—>

Option one allows to input the robot information (center and radius) using the keyboard.
Option two reads that information from a file specified by the user. Option three allows
to generate multiple random robot locations in the 2D environment and test each one of
them for collision. This information can be stored to a file and used for future collision test
accessing option 3 too. The cpu statistics of each set of collision tests can be stored to a file
if desired. Option four allows to test for collision the current robot information (obtained

from options one or two).

3D EODM

The 3D EODM can be executed by typing in a console:
> eodm3d < filename.lin >

where filename.lin is the file that describes the environment of the robot. A simple 3D

APPENDIX C. USER’S GUIDE 83

environment is shown in Figure C.4. Both black and white nodes are visible, as well as a
single robot sphere on the upper right corner of the octree. The robot information is read
from the file robot.dat by default. To test the robot sphere for collision, press the right
button of the mouse and choose the option “Collision Test: Single Sphere”. The status, the

closest obstacle and the minimum distance will be displayed on the console.

Figure C.4: Testing a 3D robot for collision

If a robot arm is desired, press the right button of the mouse and choose the option
“Draw Robot Arm” (see Figure C.5). Because it is difficult to visualize, the white nodes of
the EODM will disappear.

256x256.lin

Figure C.5: Testing a robot arm for collision

APPENDIX C. USER’S GUIDE 84

At that moment, the system prompts the user to input the file that contains the robot
arm information. For this example, we used the file robot3-6.dat generated by Jung [26]).
Once the robot is drawn, each sphere is tested for collision automatically. The cpu statistics
and collision results can be stored to a file chosen by the user.

In case the graphical interface is not used, the functionalities of the console operated
menu (shown below) are the same as the ones for the 2D EODM, with the exception of
option five. It allows to read and test for collision the set of spheres of a robot arm. The
cpu statistics and status can be saved to the file eodm.mat. This file can be visualized in

matlab in order to produce the plots shown in Chapter 4.

COLLISTON DETECTION MAIN MENU
[1] Enter robot positions/sizes from keyboard
[2] Get robot positions/sizes from a file
[3] Generate/Test multiple random robot positions
[4] Perform collision detection
[5] Test robot arm spheres file
[6] Quit

Select an option -->

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

(8]

Arimoto, S., H. Noborio, S. Fukuda, and A. Noda. A feasible approach to automatic
planning of collision-free robot motions. In International Symposium on Robotics Re-
search, pages 479-488. B.R.R. Bolles editors. MIT Press, 1988.

Barraquand, J. and J.C. Latombe. Robot motion planning: A distributed representa-
tion approach. International Journal of Robotics Research, 10(6):628-649, 1991.

Brabec, Frantisek and Hanan Samet. Spatial index demos. Collection of java applets
based on the algorithms of Hanan Samet. [http://www.cs.umd.edu/ brabec/quadtree].
(January, 2001).

Chen, P.C. and Y.K. Hwang. SANDROS: A motion planner with performance propor-
tional to task difficulty. In Proceedings of the 1992 IEEE International Conference on
Robotics and Automation, pages 2346—2353. Nice, France, 1992.

Cohen, Jonathan, M.C. Lin, D. Manocha, and K. Ponamgi. I-COLLIDE: An interactive
and exact collision detection system for large-scale environments. In 1995 Symposium
on Interactive 3D Graphics, pages 189-195, 1995.

de Berg, M. Linear size binary space partitions for uncluttered scenes. Algorithmica.,
28:353-366, Springer-Verlag, New, York Inc. 2000.

del Pobil, A.P. Sd motion planning based on a spherical hierarchical representation. In
F. Cantd and H. Terashima, editors, Proc. of the International Symposium on Artificial

Intelligence, pages 91-97. Ed. Limusa, México, 1991.

del Pobil, A.P. and Miguel A. Serna. A new representation for collision avoidance
and detection. In IEEFE International Conference on Robotics and Automation, pages
246-251. Nice, France, May, 1992.

85

BIBLIOGRAPHY 86

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Duncan, Christian A., Michael T. Goodrich, and Stephen Koburov. Balanced aspect
ratio trees: Combining the advantages of k-d trees and octrees. In 10th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 300-309, 1999.

Egbert, P.K. and S.H. Winkler. Collision-free object movement using vector fields.
IEEE Computer Graphics and Applications, 16(4):18-24, July 1996.

Elfes, Alberto. Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46-57, June 1990.

Foley J.D., A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principles
and Practice. Second Edition in C. Addison Wesley, 1996.

Gipson, Tan, Kamal Gupta and M.A. Greenspan. MPK: An Open Extensible Motion
Planning Kernel. InJournal of Intelligent Robotic Systems, 8(18):433-443, 2001.

Greenspan, Michael and Nestor Burtnyck. Obstacle count independent real-time colli-
sion avoidance. In IEEE International Conference on Robotics and Automation, pages
1073-1078, 1996.

Gupta Kamal K. Motion Planning: Overview and State of the Art, pages 3-8. Practical
Motion Planning in Robotics: Current Approaches and Future Directions. John Wiley
and Sons, West Sussex, England, 1998.

Hayward, Vincent. Fast collision detection scheme by recursive decomposition of a ma-
nipulator workspace. In Proc of the IEEE Intl Conference on Robotics and Automation,
pages 1044-1049, 1986.

Hearn Donald and Pauline M. Baker. Computer Graphics, C version. Second edition.
Prentice-Hall, USA, 1997.

Hoff III, Kenneth, John Keyser, Ming Lin, Dinesh Manocha and Tim Culver. Fast
computation of generalized Voronoi diagrams using graphics hardware. In Computer
Graphics. Annual Conference Series, 33:277-286, 1999.

Hoff 111, Kenneth, T. Culver, J. Keyser, MC. Lin, and D. Manocha. Interactive motion
planning using hardware-accelerated computation of generalized voronoi diagrams. In
Proceedings of the 2000 IEEE International Conference on Robotics and Automation,
pages 2931-3726. San Francisco, CA., April 2000.

BIBLIOGRAPHY 87

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Hudson, T., MC. Lin, J. Cohen, S. Gottschalk, and D. Manocha. VCOLLIDE: Accel-
erated collision detection with VRML. In Proceedings of VRML, 1997.

Hunter G.M. Efficient Computation of Data Structures for Graphics.Ph. Thesis. PhD
thesis, Department of Electrical Engineering and Computer Science. Princeton Univer-

sity, Princeton, NJ, 1978.

Hwang, Y.K. and Narendra Ahuja. Gross motion planning - a survey. ACM Computing
Surveys, 24(3):219-291, September, 1992.

Hwang Y., P.G. Xavier, P.C. Chen, and P.A. Watterberg. Motion Planning with SAN-
DROS and the configuration space toolkit, pages 55-78. Practical Motion Planning

in Robotics: Current Approaches and Future Directions. John Wiley and Sons, West
Sussex, England, 1998.

Jiménez, P., F. Thomas, and C. Torras. 3d collision detection: A survey (2000).
[http://citeseer.nj.nec.com/431815.html|. (August, 2001).

Jung, Derek and Kamal Gupta. Octree-based hierarchical distance maps for collision
detection. Journal of Robotic Systems, John Wiley, 14(11):789-806, 1997. A version also
appeared in IEEE International Conference on Robotics and Automation. Minneapolis.
1996.

Jung Derek. Range image integration and hierarchical distance maps for sensor-based
collision detection and path planning. Master’s thesis, School of Enginering Science.

Faculty of Applied Science. Simon Fraser University., Canada, August, 1997.

Kavraki, L.E., P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps
for path planning in high dimensional configuration spaces. IEEE Trans. Robot. Autom.,
12:566-580, 1996.

Kavraki, L.E. and J.-C. Latombe. Probabilistic roadmaps for robot path planning, pages
33 — 53. Practical Motion Planning in Robotics: Current Approaches and Future
Directions John Wiley and Sons. West Sussex, England, 1998.

Laubach, S.L. and J.W. Burdick. Wedgebug: A sensor-based path planner for planetary
microrovers. In IEEE Intl Conference on Robotics and Automation, Workshop W8:

BIBLIOGRAPHY 88

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Integrating Sensors with Mobility and Manipulation. Organizers: Kamal K. Gupta,
Angel del Pobil, Howie Choset, April 2000.

Lin, Ming C. and John F. Canny. Fast algorithm for incremental distance calculation.
In Proceedings of the 1991 IEEE International Conference on Robotics and Automation,
pages 1008-1014, 1991.

Lin, M.C., Gottschalk S. and D. Manocha. Obbtree: A hierarchical structure for rapid
interference detection. In Proceedings of the ACM-SIGGRAPH, pages 171-180, New
Orleans, L.A. August 1996.

Lin, M.C. and S. Gottschalk. Collision detection between geometric models: A survey.
In Proceedings of IMA Conference on Mathematics of Surfaces, 1998.

Meagher D. Octree encoding: A new technique for the representation, manipulation
and display of arbitrary 3d objects by computer. Technical report ipl-tr-80-111. Image
Processing Laboratory. Rensselaer Polytechnic Institute, Troy, NY, October 1980.

Mirtich Brian. Efficient Algorithms for Two-Phase Collision Detection, pages 203—223.
Practical Motion Planning in Robotics: Current Approaches and Future Directions.
John Wiley and Sons, West Sussex, England, 1998.

Moravec, H.P. and A. Elfes. High resolution maps from wide angle sonar. IEEE
International Conference on Robotics and Automation, pages 138-145, 1985.

Quinlan, Sean. Efficient distance computation between non-convex objects. IFEFE

International Conference onRobotics and Automation, 1994.

Samet Hanan. Applications of spatial Data Structures: Computer Graphics, Image
Processing and GIS. Addison-Wesley Publishing Company, Reading, MA, 1990.

Samet Hanan. The Design and Analysis of Spatial Data Structures. Addison-Wesley
Publishing Company, Reading, MA, 1990.

Samet, Hanan. The quadtree and related hierarchical data structures. ACM Comp.
Surveys, 16(2):187-260, June 1984.

Schneier, M. Path-length distances for quadtrees. Information Sciences, 23:49-67,
1981.

BIBLIOGRAPHY 89

[41] Yu, Yong and Kamal Gupta. On sensor-based roadmap: a framework for motion
planning for a manipulator arm in unknown environment. In JEEE/RSJ International

Conference on Intelligent Robot and System, pages 1919-1924, 1998.

