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Abstract 
 

Soft objects are often desired in applications such as 
virtual surgery training.  Soft object simulations are 
computationally intensive because object deformation 
involves numerically solving a large number of 
differential equations. However, realistic force feedback 
requires deformation be computed fast and graphic 
feedback requires deformation be highly detailed. In this 
paper, we propose an approach that balances these 
requirements by subdividing the area of interest on a 
relatively coarse mesh model. Thus we keep the number of 
nodes of the model under control so that the simulation 
can be run at a sufficiently high rate for force feedback. 
The model we use is based on a mass-spring model. When 
a portion of the surface is subdivided, new values of mass 
and spring constants are determined such that computed 
force feedback offers the user the same reaction force as 
before subdivision.  
 
1. Introduction 
 

In recent years, haptic feedback began to play a role in 
the development of virtual environment simulations. 
Devices such as the PHANToM [23] can provide the user 
with a sense of touch to some degree by sending reaction 
forces to the user’s hands, providing a new way for the 
user to interact with objects in a virtual environment. Of 
interest are so-called “soft” objects that deform under 
applied forces, such as organs simulated as parts of 
medical training systems or surgical simulation systems.  

Two common physics-based models used for 
representing deformable objects are mass-spring models 
and the finite element method (FEM). In general the 
mathematics involved in mass-spring models is relatively 
simple and easy to implement. For example a 
compression wave model on a mass-spring system to 
achieve bulging and curving motions of worms and 
snakes was proposed by Miller [1]. A 3D mass-spring 
lattice to simulate contraction of human arm muscles is 
given in [2].  An effort to model the surface force 
characteristics of the human thigh, a two layer mass-

spring model with linear and nonlinear springs is 
proposed in [7][8] to fit the force curve obtained from 
probing a real human thigh. A spring-damper model to 
represent the vertebrae in an epidural injection simulator 
is used in [4]. Most mass-spring models are tailored for 
the specific application under investigation, thus the 
mass-spring models used in [1], [2] and [7] are 
substantially different. In [1], a chain of masses connected 
by springs would suffice. This is not the case in [2] where 
volumetric deformation is highly desired; therefore a 3D 
lattice of masses and springs is needed. If highly detailed 
deformation features are desirable, a 3D lattice of masses 
and springs would introduce too much computation. In 
this paper we adopt a mass-spring model similar to that 
proposed in [7], mainly focused on modeling object 
surfaces, but which takes into account internal material 
property of an object. 

The finite element method (FEM) is based on 
continuum mechanics and numerical analysis. It offers 
more accuracy than the mass-spring models in physically 
based simulation. [18] and [6] modeled facial tissue to 
predict the results of craniofacial surgeries. There are a 
hepatic surgery simulation system proposed by [20] and 
an eye surgery simulation system by [21]. However, the 
need to manipulate large matrices and solve large 
numbers of differential equations imposes performance 
difficulties to apply FEM to real time interactive haptic 
feedback applications. Some work has been done on FEM 
models to make a trade-off between accuracy and update 
rate. For example, [14] used “finite spheres” as an 
approximation to FEM in a local area; [15] and [16] 
interpolated forces between calculated forces from a low 
update rate deformation model to feed the demand of high 
update rate haptic simulation. The other approach to 
speed up run-time simulation is to isolate some 
procedures of the real-time computation, precompute 
them and later combine precomputed results with states of 
a simplified run-time model. A boundary element method 
to compute system response of a linear model offline was 
proposed by [17]. Precomputation of “elementary 
deformation” is also an important part of [20] for hepatic 
surgery simulation system. [19] used implicit integration 



 

to achieve stability with large time steps in their cloth 
simulation. However they did not target at real-time 
simulation.  

Surface subdivision is a useful tool in computer 
graphics to create smooth surfaces out of polygon meshes. 
The two main categories of subdivision schemes are 
interpolatory schemes and approximating schemes. 
Typical approximating schemes include Doo-Sabin [23], 
Catmull-Clark [24] and Loop [3]. Typical interpolatory 
schemes include “modified butterfly” [26] and Kobbelt 
[27]. Recently [12] proposed a new method to 
interactively position subdivision control vertices by 
applying forces to a finite element model composed of 
these vertices. Subdivision schemes introduce new nodes 
into the local area of the mesh. If the local area is also 
deformed, more nodes indicate that more detailed 
deformation features can be expressed than before 
subdivision. 

In this paper we propose the concept of haptic 
subdivision with levels of detail as a methodology to 
balance update rate and computational complexity. When 
the user interacts with the object (a mass-spring model), 
the local area of the physical model is refined, while other 
parts of the model remain coarse. Deformation and force 
will then be computed using this refined model with 
mixed levels of details. The main difference of our 
approach from others’ work is that refinement is 
performed directly on the underlying physical model, 
rather than on its graphic representation.  

Some parameters of the physical model need to be 
determined after the refinement, including masses and 
spring constants. In general it is difficult to obtain an 
analytical expression of the spring constants after 
subdivision in terms of those before subdivision [28], 
therefore we propose a guideline on how to determine 
these parameters. Experiments based on this guideline 
have revealed the relationship between parameters. 

The rest of this paper is divided into the following 
sections: Section 2 is a brief description of the mass-
spring model used in this paper. Section 3 provides the 
details of surface subdivision, including the determination 
of parameters of physical model. Section 4 is a brief 
discussion of our result and in section 5 we envision some 
possible directions of future work. 
 
2. Mass-spring model 
 

In this paper we use a mass-spring model for surface 
modeling. Although easy to implement, the mass-spring 
model is capable of simulating a wide range of non-rigid 
behavior found in nature. In our model, the simulated 
surface is divided into small triangles, where at each 
vertex a mass point (a node) is defined. A linear spring is 
mounted along each triangle edge. These springs are 
called “mesh springs” because they model the surface of 
the object. The mesh spring constant is denoted mK . 

When a soft elastic object deforms, the interior of the 
object also contributes to both the shape of deformation 
and the force feedback to the user. To reflect this fact in 
our model, each node is also connected by a spring to its 
initial position, thus “home springs” denoted hK .  We 
add simple damping to the mesh by applying a force 
proportional to the velocity of each mass point, but in the 
opposite direction. 

  
 
 
 
 
 
 
 
 
 

Figure Figure Figure Figure 1111:::: part of a mass part of a mass part of a mass part of a mass----spring modelspring modelspring modelspring model    
 

Figure 1 shows part of the modeled surface. The mass-
spring model can be described as a system of differential 
equations.  x,  v and a are position, velocity and 
acceleration vectors; if  is the total force vector on a node 
and im is the node’s mass value. 
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if  can be written as  

 (2) 

 
where il is the displacement vector from the node’s 
current position to its initial position; 

ijl is the vector 
pointing from the i th node to its j th directly connected 
neighbor node; ijr is the rest length of the mesh spring 

connecting the i th node and its j th neighbor node; e
if is 

the external force applied on the i th node. In equation (2) 
we see the force exerted on the node in question consists 
of two major components: internal forces and external 
forces. Internal forces include damping effect, home 
spring force, and mesh spring forces.  
 
3. Haptic subdivision  
 

The portion of the object being deformed by user 
interaction is an area of high interest. It thus seems clear 
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that such areas should be represented by a finer mesh than 
the rest of the object. 

Thus for computational efficiency, we would like to 
work with a relatively coarse mesh, subdivided to a finer 
mesh in the area of interest. Since we provide both visual 
and haptic rendering, both meshes need be subdivided. 
Doing this for the geometric mesh is straightforward. 
However, it is more complex to subdivide the physical 
(haptic) mesh since the mass spring parameters must also 
be “subdivided”, i.e. recalculated. 

In this section we first briefly review geometric 
subdivision, then describe the experimental study we did 
to find suitable values for physical parameters during 
haptic subdivision. 
 
3.1. Geometric Subdivision  
 

Figure 2 (a) shows a part of a coarse triangular mesh 
and (b) shows the same part after subdivision. All nodes 
in (b) are new nodes. New nodes can be divided into two 
categories: one includes the nodes corresponding to the 
original nodes, such as node A’, shown as large dots in 
(b); the other includes the nodes corresponding to the 
original edges, such as node E, shown as small dots. For 
convenience, we call the two kinds of nodes “type 1” and 
“type 2” respectively in the rest of this paper. The thick 
lines in (b) are new edges connecting a type 1 node to a 
type 2 node. These lines outline the shape of the original 
mesh. The thin lines are new edges connecting two type 2 
nodes. Dashed line segments represent the edges 
connecting to the other nodes on the mesh. Every triangle 
on the original mesh is split into four smaller ones (in this 
example), and these new triangles form the new mesh. By 
introducing new nodes and new triangles properly into the 
new mesh, a more accurate representation of the smooth 
surface is obtained.  

Figure 2 shows subdivision of a triangular mesh. 
Subdivision schemes dedicated to triangular meshes 
include the Loop [3] and the Modified Butterfly [26] 
schemes. There are also schemes for other kinds of 
polygons, such as the Catmull-Clark [24] and the Kobbelt 
[27] schemes for quadrilaterals. One of the main 
properties shared by all schemes is locality, i.e., the 
position of a new node should only depend on its 
corresponding neighborhood on the original mesh. For 
example, in Figure 2 (b), the position of node E only 
depends on nodes A, B, C and D on the original mesh. 
Locality guarantees that moving a node on the original 
mesh only affects the shape of subdivided mesh locally. 

The mesh in Figure 2 (b) was obtained by using the 
Loop scheme on the mesh in Figure 2 (a). The Loop 
scheme generates type 1 and type 2 nodes. If the original 
mesh has V nodes and E edges, the number of nodes on 
the new mesh will be V+E. The locality property of the 
Loop scheme is embodied by the fact that all new node 
positions are defined as a weighted sum of the positions 

of the neighbor nodes on the original mesh. Figure 3 
shows the patterns used to define positions for type 1 and 
type 2 nodes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FFFFigure igure igure igure 2222: : : : subdivision eg.subdivision eg.subdivision eg.subdivision eg.. In (a), . In (a), . In (a), . In (a), largelargelargelarge dots are the original nodes.  dots are the original nodes.  dots are the original nodes.  dots are the original nodes. 
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Figure Figure Figure Figure 3333: patterns used in the Loop scheme for interior nodes: patterns used in the Loop scheme for interior nodes: patterns used in the Loop scheme for interior nodes: patterns used in the Loop scheme for interior nodes. K is . K is . K is . K is 
the number of neighbor nodes directly connethe number of neighbor nodes directly connethe number of neighbor nodes directly connethe number of neighbor nodes directly connected to the original cted to the original cted to the original cted to the original 
nodenodenodenode P P P P. . . . β  is the weighting factor for the neighbor nodes. Both in  is the weighting factor for the neighbor nodes. Both in  is the weighting factor for the neighbor nodes. Both in  is the weighting factor for the neighbor nodes. Both in 

(a) and (b) the weighting factors sum to 1.(a) and (b) the weighting factors sum to 1.(a) and (b) the weighting factors sum to 1.(a) and (b) the weighting factors sum to 1.    
 

In Figure 3 small filled rectangles are nodes on the 
original mesh; small filled circles are the new nodes 
introduced by subdivision. The patterns in Figure 3 are 
parts of the interior of the original mesh. Boundary cases 
are not considered for now. There are nodes surrounding 
the patterns, but because of locality, those nodes do not 
contribute to the positions of the new nodes in Figure 3. 
The fractions beside the original nodes are weighting 
factors applied to the coordinates of the original nodes to 
obtain those of the new node.   

If a new node is at the boundary of the new mesh, 
other rules have to be applied (Figure 4). Again we see 
the property of locality: boundary nodes are weighted 
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sums of nodes in that local area. The weighting factors 
again sum to 1. 
 
 

 
    

Figure Figure Figure Figure 4444: patterns used in the Loop scheme for boundary nodes; : patterns used in the Loop scheme for boundary nodes; : patterns used in the Loop scheme for boundary nodes; : patterns used in the Loop scheme for boundary nodes; 
(a) i(a) i(a) i(a) is type 2; (b) is type 1.s type 2; (b) is type 1.s type 2; (b) is type 1.s type 2; (b) is type 1.    
 

In general, gaps can occur between subdivided areas 
and non-subdivided areas. This is corrected by 
introducing new polygons to fill the gaps. 
 
3.2. Determination of physical parameters 
 

In this study the user is assumed to interact with a 
contacted node on the mesh. Our method will apply 
equally well if the user interacts with a finite area. To 
facilitate the discussion about haptic subdivision, we 
define the “first ring” around a contact node (e.g. node C 
in Figure 1) to be the area containing all the nodes that are 
connected directly to that node, as well as the node itself. 
The “second ring” is defined as the area containing all the 
nodes that have a direct connection to the first ring, 
including the first ring. Third ring”, “fourth ring” etc. are 
defined similarly. We name subdivision in the first ring 
“one-ring subdivision”. “Two-ring subdivision” and so 
forth are defined similarly. As the number of rings 
involved in subdivision increases, the number of nodes on 
the new mesh and computational cost increases 
exponentially. Therefore we focus on one-ring and two-
ring subdivision. 
 
3.2.1. Determining mass parameter 
 

After subdivision, masses for new nodes need to be 
determined. Since we want the user to feel that he is 
interacting with the same object, the total mass of the 
subdivided area should be the same as before. If this area 
has N nodes before subdivision and N ′  nodes after 
subdivision and each node has a mass value of m  before 
subdivision, then the mass value m′  for each new node in 
this area is 

   (3) 

This new mass value is used in deforming the new mesh. 
 
3.2.2. Guideline to determine spring constants 
 

Recall we denote home spring constants as hK and 
mesh spring constants as mK . Before further subdivision, 
we need to determine the new home spring constant hK ′  
and new mesh spring constant mK ′ . If we keep the spring 
constants unchanged after subdivision, this area will be 
stiffer than its counterpart on the original mesh since there 

are more springs preventing the surface from deforming. 
Therefore we need to find values for hK ′ and mK ′  to keep 
the overall deformation and contact force consistent 
before and after subdivision. 

In this paper we propose a method as a guideline for 
finding values for hK ′ and mK ′ . This method is based on 
the hypothesis that the mesh should have the same overall 
deformation and contact force before and after 
subdivision: if force F is needed to displace a node of the 
original mesh surface to a distance x , then with hK ′ and 

mK ′  defined on subdivided area around that contact node, 
the same force F should displace the type 1 node 
corresponding to the original contact node to the same 
distance x . This idea can be expressed as 

),(),,( , xKKFxKKF mhmh =′′′    (4) 

Our original mesh is a regular equilateral triangular 
mesh. If one-ring subdivision is applied on the mesh 
shown around node C in Figure 5 (a), the new mesh will 
be like that illustrated in Figure 5 (b). New edges are 
shown in thin lines in Figure 5 (b), among which are 
edges added to prevent cracks (shown in gray). Two-ring 
subdivision is carried out similarly. 
 
 
 
 
 
 
 
 
 
 
 
Figure Figure Figure Figure 5555. . . . OneOneOneOne----ring subdivision of a coarse meshring subdivision of a coarse meshring subdivision of a coarse meshring subdivision of a coarse mesh 

 
 
 
 
 
 
 
 
 
 
 
 
 
    

Figure Figure Figure Figure 6666. . . . Force magnitude vs. displacement of node CForce magnitude vs. displacement of node CForce magnitude vs. displacement of node CForce magnitude vs. displacement of node C. x: . x: . x: . x: 
displacement; L: initial element size.displacement; L: initial element size.displacement; L: initial element size.displacement; L: initial element size.    

To find values of hK ′  and mK ′  in equation (4), hK , 

mK  and x must be measured. Therefore we displace the 

2
1

2
1

4
3

8
1

8
1

(a) (b)

(a) (b)

CC

C C'

LLLL

rmN
N
Nmm =

′
=′



 

central node C on the coarse mesh to various distances, 
and calculate the total reaction force at C, namely cF . We 
assume in our analysis that displacement of any of nodes 
on our mesh to be no more than the element size L of the 
original mesh. For this experiment, L  is initialized to 
30mm and hK  and mK  to 0.06 N/mm. Figure 6 is the 
resulting plot of cF  as a function of the normalized 
displacement ( Lx / ) before the mesh is subdivided. 
 
3.2.3. An initial approach for determining spring 
constants 

One simple approach to finding hK ′ and mK ′  is to 
make the force for a given displacement the same after 
subdivision as before. Thus we must reduce the home 
spring constant when the number of nodes increases after 
subdivision. Let us denote the area to subdivide as A; if 
there are N  and N ′  nodes in A before and after 
subdivision, the relation between hK  and hK ′  can be 
written as: 

rhhh NK
N
NKK =

′
=′    (5) 

Now we need to find appropriate values for mK ′ . At 
each displacement, after subdivision we adjust mK ′  until 
the force matches the magnitude on Figure 6 
corresponding to that displacement (upper plot in Figure 
7).  In this figure we also recorded the value of mK ′  when 

hK ′  remains unchanged after subdivision (lower plot in 
Figure 7).  Plots in Figure 7 are obtained using one-ring 
subdivision.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Figure Figure Figure 7777. . . . mKmK /′         vs.vs.vs.vs. displacement of node C (one displacement of node C (one displacement of node C (one displacement of node C (one----ring ring ring ring 

subdivision)subdivision)subdivision)subdivision).  x: displacement; L: initial element size..  x: displacement; L: initial element size..  x: displacement; L: initial element size..  x: displacement; L: initial element size.    

In Figure 7, as displacement approaches zero, the 
upper plot asymptotically approaches infinity. This is due 
to the dominance of home springs at very small 
displacements, where even a large change in mesh spring 
constant cannot compensate for the change of home 

spring constant. Because of this numerical instability 
equation (5) is not a desirable solution to finding hK ′ and 

mK ′ . 
The lower plot shows an approximately linear 

relationship. This relationship does not cause instability to 
the mesh after subdivision. It also shows that mK ′  is 
smaller than mK , which is reasonable, i.e. to reach the 
same stiffness, a denser mesh requires smaller spring 
constants. However, since the subdivided area has more 
home springs with the same spring constant than before 
subdivision, this part of the object will be stiffer. We want 
the user to feel the same force before and after 
subdivision, therefore this relationship also has its 
drawbacks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Figure Figure Figure 8888. . . . mm KK /′ vs. displacement of node C (twovs. displacement of node C (twovs. displacement of node C (twovs. displacement of node C (two----ring ring ring ring 

subdivision). subdivision). subdivision). subdivision). x: displacement; L: initx: displacement; L: initx: displacement; L: initx: displacement; L: initial element size.ial element size.ial element size.ial element size.    

The counterparts of the plots in Figure 7 with two-ring 
subdivision are drawn in Figure 8 and show similar 
properties to those in Figure 7. Thus the number of rings 
subdivided does not affect the general form of the plots. 

Because of the instability and poor physical property 
preservation ability that the plots in Figure 7 and Figure 8 
indicate, we need a better approach for determining spring 
constants.  

 
3.2.4. An improved approach for determining spring 
constants 
 

We have two unknowns, hK ′  and mK ′ , but equation (4) 
only offers one constraint. Another constraint is needed. 
One method is to fix the ratio of hm KK ′′ / . Given this ratio, 
we adjust both mK ′  and hK ′  until the force magnitude at a 
displacement after subdivision matches the corresponding 
point on Figure 6.  

Figure 9 shows plots of hh KK /′ with =′′ hm KK / 4, 1 
and 0.25. The plots of mm KK /′ with the same ratios of 

hm KK ′′ / are shown in Figure 10. Figure 9 and Figure 10 



 

assume one-ring subdivision; Figure 11 and Figure 12 are 
two-ring counterparts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Figure Figure Figure 9999.  .  .  .  hh KK /′ vs. Displacemevs. Displacemevs. Displacemevs. Displacement of node C (onent of node C (onent of node C (onent of node C (one----ring ring ring ring 

subdivision). subdivision). subdivision). subdivision). x: displacement; L: initial element size.x: displacement; L: initial element size.x: displacement; L: initial element size.x: displacement; L: initial element size.    

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure Figure Figure Figure 10101010. . . . mm KK /′ vs. Displacement of node C (onevs. Displacement of node C (onevs. Displacement of node C (onevs. Displacement of node C (one----ring ring ring ring 

subdivision). subdivision). subdivision). subdivision). x: displacement; L: initial element size.x: displacement; L: initial element size.x: displacement; L: initial element size.x: displacement; L: initial element size.    

In Figure 9 and 11, all the plots start from a ratio of 
hh KK /′ close to 1 when the displacement is small. This 

implies that at small displacements home spring constant 
should have the same value as that before subdivision. 
When hK ′  has a ratio of 4 over mK ′ , the plot shows the 
least variation. This is also true in Figure 12 (actually they 
are the same plot drawn in different ordinates). Although 
the mh KK ′=′ 25.0 plot shows the largest variation in value, 
it is still within the value range where the mesh stays 
stable. This fact proves that keeping the hm KK ′′ / ratio 
constant is a more stable method than that proposed by 
equation (5). Comparing the plots in Figure 7 and Figure 
9, we see this stability comes from the fact that hK ′  is 
allowed to change as displacement of the contact node 
varies. 

Comparing Figure 11 and Figure 12 with Figure 9 and 
Figure 10 we can conclude that the number of rings 
subdivided does not change the characteristics of the plots. 
The more rings involved in subdivision, the more 

computation power is needed. One should choose the 
number of rings best suitable to the application. 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

Figure Figure Figure Figure 11111111. . . . hh KK /′ vvvvs. Displacement of node C (twos. Displacement of node C (twos. Displacement of node C (twos. Displacement of node C (two----ring ring ring ring 

subdivision). subdivision). subdivision). subdivision). x: displacement; L: initial element size.x: displacement; L: initial element size.x: displacement; L: initial element size.x: displacement; L: initial element size.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Figure Figure Figure 12121212.  .  .  .  mm KK /′ vs. Displacement of node C (twovs. Displacement of node C (twovs. Displacement of node C (twovs. Displacement of node C (two----ring ring ring ring 

subdivision). x: displacement; L: initial element sizsubdivision). x: displacement; L: initial element sizsubdivision). x: displacement; L: initial element sizsubdivision). x: displacement; L: initial element size.e.e.e.    

The number of rings does not change the nature of the 
shape of the plots in Figure 7 through Figure 12. However, 
one may wonder if the ratio of hm KK / plays a role in 
shaping the plots. In another experiment we set 

hm KK / to be 10 and 0.1, respectively, which are 
significantly different from the ratio 1.0 used to obtain the 
above plots, and then collected data that corresponds to 
Figure 6 through Figure 12 with these ratios. The data 
show the similar tendencies to those in Figure 6 through 
Figure 12. Therefore the initial ratio of hm KK / does not 
affect the basic relationship between mK ′  and mK , or that 
between hK ′ and hK . 

Since different ratios of hm KK ′′ / can be used to meet 
the requirement stated by equation (4), as illustrated in 
from Figure 9 to Figure 12, which ratio to choose? Let’s 
first consider what impact hm KK ′′ /  can have on the shape 
of deformation of the mesh. If mK ′  is extremely large and 



 

hK ′  approaches zero, the mesh would act like a rigid shell. 
This is the case of an infinite large ratio of hm KK ′′ / . On 
the other hand, if hK ′  is extremely large and mK ′  
approaches zero, whenever the user is displacing a node, 
no surrounding nodes would be displaced because they 
are “fixed” in their initial position by the extremely stiff 
home springs. Therefore the ratio between mesh spring 
constant and home spring constant determines the shape 
of deformation. To keep the shape of deformation 
consistent before and after deformation, it is thus 
important to keep the ratio of mesh spring constant over 
home spring constant unchanged. In the experiment we 
carried in obtaining Figure 9 to Figure 12, the ratio of 

hm KK /  is 1 before subdivision, therefore after 
subdivision the plots corresponding to mh KK ′=′  in 
Figure 9 and Figure 11 should be used for new values of 

mK ′  and hK ′ , although these plots are not the plots with 
least variation in values. 

The plots of mh KK ′=′  in Figure 9 and Figure 11 show 
a function of displacement of the contacted node. This 
indicates haptic subdivision requires variable spring 
constants dependent on contact node displacements. To 
apply variable spring constants on the subdivided mesh, a 
look-up table can be developed which contains values of 

hK ′ and mK ′ for discrete displacements. The spring 
constant values at current displacement of contact node 
can then be obtained by interpolating between entries of 
the look-up table.  

 
3.3. Summary of haptic subdivision 
 

In short haptic subdivision involves three steps: 
1) Subdivide the haptic mesh, keep a constant ratio 

between mesh spring constant and home spring constant, 
obtain a value curve like the middle one in Figure 11 and 
save the values in a table. This is the preprocessing stage. 

2) At run time, subdivide the haptic mesh around the 
contacted node with a standard geometric subdivision 
scheme and construct a new mesh. 

3) Apply new spring constants to the new mesh and 
deform.  

Figure 13 shows haptic subdivision on a triangulated 
hemisphere. Figure 13 (a) is the original mesh when 
deformed; (b) is the mesh deformed with one-ring 
subdivision; (c) is the mesh deformed with two-ring 
subdivision. Note the more accurate and realistic 
appearance of (c) over (a). 
 
4. Conclusions and discussions 
 
In this paper we propose a novel approach which 
combines physically based modeling with surface 
subdivision techniques to achieve deformation simulation 
with levels of detail. Although much research has been 

done on geometrically subdividing a surface in computer 
graphics literature, how to determine the physical 
parameters of the mesh has not been addressed yet. In our 
study we designed experiments to find good values for 
spring constants with equation (4) as a guideline. The 
procedures of haptic subdivision as a whole are outlined 
at the end of section 3. These procedures can be 
integrated into existing interactive deformable object 
simulation to achieve better realism. 

There are many aspects worth further improvement in 
our work. First, our mass-spring model may be extended 
to be multi-layer with nonlinear springs to simulate 
complex deformation such as that of human tissues. 
Secondly, haptic subdivision on a hybrid finite-element-
mass-spring model may offer more accurate simulation 
with levels of detail. Thirdly, point contact in our 
implementation can be extended to area contact to 
accommodate a broader range of applications. 
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(c) 
Figure Figure Figure Figure 13131313: Haptic subdivision applied on a hemisphere. (a): th: Haptic subdivision applied on a hemisphere. (a): th: Haptic subdivision applied on a hemisphere. (a): th: Haptic subdivision applied on a hemisphere. (a): the e e e 
deformed original mesh. (b): onedeformed original mesh. (b): onedeformed original mesh. (b): onedeformed original mesh. (b): one----ring subdivision applied  around ring subdivision applied  around ring subdivision applied  around ring subdivision applied  around 
the contact point. (c) twothe contact point. (c) twothe contact point. (c) twothe contact point. (c) two----ring subdivision applied around the ring subdivision applied around the ring subdivision applied around the ring subdivision applied around the 
contact point. Note the improved appearance of (c) over (a).contact point. Note the improved appearance of (c) over (a).contact point. Note the improved appearance of (c) over (a).contact point. Note the improved appearance of (c) over (a).    
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